STRONGLY RoOBUST ADAPTIVE CONTROL:
THE STRONG ROBUSTNESS APPROACH



1St

This dissertation has been completed in partial fulfilment of the requirement of the
Dutch Institute of Systems and Control (DISC) for graduate study.

&

Twente University Press

Publisher:

Twente University Press,

PO. Box 217, 7500 AE Enschede, The Netherlands
www.tup.utwente.nl

Cover design:
Photo taken by Maria Cadic
Print: Océ Facility Services, Enschede

(OM. Cadic, Enschede, 2003
No part of thiswork may be reproduced by print,
photocopy or other means without the permission
in writing from the publisher.

ISBN 9036519454



STRONGLY ROBUST ADAPTIVE CONTROL:
THE STRONG ROBUSTNESS APPROACH

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. F. A. van Vught,
volgens bedluit van het College voor Promoties
in het openbaar te verdedigen
op woensdag 3 oktober 2003 te 15:00 uur

door
Maria Cadic

geboren op 21 december 1975
te Toulouse, Frankrijk



Dit proefschrift is goedgekeurd door :

de promotor, Prof. dr. A. J. van der Schaft,
en de assistent-promotor, Dr. J.W. Polderman.



To my parents and my sisters Papa, Maman, Anne and Alice

To my husband Gianluca



Samenstelling promotiecommissie

\Voorzitter:
Prof. dr. W.H.M. Zijm Universiteit Twente EWI
Secretaris:
Prof. dr. W.H.M Zijm Universiteit Twente EWI
Promotor:

Prof. dr. A.J. van der Schaft Universiteit Twente EWI

Assistent-promotor:

Dr. JW. Polderman Universiteit Twente EWI
Leden:

Prof. dr. ir. J. van Amerongen  Universiteit Twente EWI
Prof. dr. A. Bagchi Universiteit Twente EWI
Prof. M. Campi Universita Brescia, Italy

Prof. dr. ir. M.H.G. Verhaegen  Technische Universiteit Delft
Dr. S. Weiland Technische Universiteit Eindhoven



Contents

Notation

1

Introduction

11 Adaptivecontrol . . . .. ..
111 Thecertainty equivalenceprinciple . . . . . . ... ... ... ...
1.1.2 Threeissuesin certainty equivalence adaptive control . . . . . . . ..

12 Theessenceof strongrobustness . . . . .. ... .. ... ... ... ....

13 Thesisoutline . . . . . ...

Mathematical framework

21 Classofobjects . . . . ... . .. . ..
211 Modelsandtheirrepresentations . . . . . . ... ... ... ...
212 Actudsystem. . . ...
213 Controllers . . . . . . e

2.2 Set-membershipidentification . . . . ... ... ... .. ... ...
221 Membership set: computation . . . . . ...
222 Membership set: properties . . . . . ...
223 Modelsdlection. . ... ...

Strong robustness and related notions
31 Definitions. . . . . ...
311 Strongrobustness . . . . . . . ..
3.12 Strongrobustnessradius . . . . ... ... L.
32 StrongrobuStNeSSMEASUIES . . . . v v v v v v e e e e e e e
3.21 Structured stability radii andrelated notions . . . . . . ... ... ..
3.2.2 Structured stability radii and strong robustness . . . .. ... .. ..
3.2.3 Existence of non-trivial strongly robust setsof systems . . . . . . ..
33 Tedtingstrongrobustness . . . . . . ..
3.3.1 Tedtingcontrollability . . ... ... .. ... ... .. .. .. ..
3.3.2 A test for strong robustness involving complex structured stability
radius . . . . . .
3.3.3 Strong quadratic robustness and Linear Matrix Inequalities in the
caseof poleplacement . . . . ... ... ... L

11
11
12
14
14
16
17
17
22



i CONTENTS
3.34 Time-invariant strong robustness and pole placement:

aKharitonov-liketest . . . . . . ... ... ... . 50

34 Wesk strong robustness: the poleplacementcase . . . . . . ... ... ... 60

34.1 Set of pole placements that are admissible for strong robustness . . . 60

34.2 Distancebetweenpolelocations . . . .. ... ... ... ... ... 62

35 Conclusions . . . . . . ... 63

4 Set-member ship identification for control 65

41 Introduction . . . . . . .. 65

4.2 Preliminariesand problemstatement . . . . . ... ... 68

421 Preiminaries . . . . ... 68

422 Problemformulation . . ... ... ... ... ... ... ... ... 69

4.3 Membership set estimation with aperiodicinput . . . . . ... ... ... .. 70

431 Selectionof theinputstructure . . . . . . . ... ... ... ..... 70

4.3.2 Boundednessof theuncertaintyset. . . .. ... ........... 71

4.3.3 Arbitrarily small unfasifiedset . . ... ... ... ......... 81

44 ConCluSiONS . . . . . . o o i e 87

5 Strongly robust adaptive control 89

51 Introduction . . . . . . . . 89

52 Motivation. . . . . .. 90

5.3 Strongly robust adaptive control: description. . . . . . ... ... ... ... 92

531 Theidentificationphase . ... ... ... ... ... ........ 92

532 Thecontrolphase. . .. .. ... ... .. . .. .. . .. . . ..., 99

5.4 Strongly robust adaptive control: analysis . . . .. ... ........... 100

54.1 Finiteswitchingtime . . . . . ... ... ... ... .. ... . ... 100

5.4.2 Convergence of themodel tothereal system . . . ... ... .. .. 100

543 TransentanalysiS. . . . . . . . . e 101

544 Asymptoticanaysis . . . . ... ... 101

545 Boundedinput . .. ... ... ... ... 102

54.6 Control performance . . . . . . ... ... o 102

5.5 Strongly robust adaptivepoleplacement . . . . . . ... ... L. 102

551 AsymptotiCs . . . . . . . . .. e 104

552 Transientanalysis. . . . . . ... 104

553 Simulationexample . . .. ... ... .o 111

56 Furtherresearch . . . . . . . . .. 113

5.6.1 Time-invariant strong robustness and dwellingtime . . . . . . .. .. 113

5.6.2 Adaptive control and weak strongrobustness . . . . . ... ... 114

5.7 Conclusions . . . . . . . . 115

6 Conclusionsand further research 117

6.1 Conclusions . . . . . . . .. 117

6.2 Recommendationsfor furtherresearch . . . . . .. ... ... ... ..... 119

6.2.1 Canwerelax thestanding assumptions? . . . . ... ... ... ... 119

6.2.2 Test for strong robustness. conservatismissue . . . . .. .. ... .. 120



CONTENTS i

6.2.4 How data can serveidentification for strong robustness? . . . . . .. 121

6.25 When to use strongly robust adaptivecontrol? . . . . ... ... ... 121
References 123
Summary 131
Samenvatting 133
Résung 135
Acknowledgments 137

About the author 139






Notation

'\'ﬁﬁﬁ?%NZ

TIx;= =m0
=

%

A
S
@ ~—

the natural numbers

the integers

the real numbers

the positive real numbers

the complex numbers

RorC

the k x p matrices with entriesin K

the identity matrix with appropriate dimensions

the identity matrix in KP>?

the ring of polynomialsin one indeterminate and coefficientsin K
k x p polynomials matrices with entriesin K[¢]

the 2-norm of the complex number a € K

the Euclidean norm of the vector V € K*

the Frobenius norm of the matrix M ¢ KF*»

the class of single-input/single-output (SISO) systems of order n
the class of controllable systemsin P,

the class of asymptotically stable systemsin P,

the map assigning to each system 6 < C,, its controller

the controller based on the system 6 € C,,

the set of controllers based on systemsinQ c C,,

the feedback interconnection of the system 6 € C,, and the controller f(8') € f(Cy,)

the characteristic polynomial of (6, f(6’)) for systems 6,6’ € C,,

the structured stability radius of the Schur matrix A € K™*™, with respect to
perturbationsin K!*¢ with the structure (D, E) € K™*! x K1x"

the strong robustness radius around asystem 6 € C,,

the strong quadratic robustness radius around asystem 6 € C,

the time-invariant strong robustness radius around a system 6 € C,

the radius of aball of systemsin P,

permutation operator on rows and columns of a matrix






Chapter 1

| ntroduction

The concept of adaptive control, emerged in the mid-fifties, contributed to an immense body
of literature and led to many practical applications. So why the need to introduce one more
approach? What is the notion of Strong Robustness announced in the title of this thesis
and why is it needed for? Our aim in this chapter is to answer these questions so as to
motivate the whole thesis, as well as provide an overview of the relevant literature. In Section
1.1, we present the concept of adaptive control, paying particular attention to one of its
main paradigms: the certainty equivalence principle. Although this principle is at the origin
of most of adaptive control design strategies, it has three well-known disadvantages. After
drawing the attention to these three drawbacks, we then speculate about what should be
modified in classical adaptive control methods so that the three presented drawbacks vanish.
This leads to the notion of Strong Robustness that will be defined and motivated in Section
1.2. Finally, Section 1.3 outlines the structure of the thesis.

1.1 Adaptive control

A very natural start to this thesis would be to define the concept of Adaptive Control. Yet,
despite thefifty years of history of thisfield, one still did not succeed in agreeing on ageneral
definition, mainly because it is not clear how to draw a sharp bound between adaptive control
and other control approaches such as robust control. As afirst attempt to such a definition,
an adaptive control system is viewed in [7] as a control system that has been designed with
an adaptive viewpointHere, adaptivecharacterizes a controller that can modify its behavior
inresponseto 'large’ changes in the dynamics of the process to be controlled and the distur-
bances corrupting this process, where 'large’ means that a single (simple) controller would
not be able to cope with such chand@g]. Alternatively, adaptive control can be seen asthe
control of a partially unknown system [46], [72], [95]. We adopt this second point of view
al along this thesis, leaving the notion of partially unknown system unspecified for the time
being.

At first sight, these definitions for adaptive control may leave the impression that an adap-
tive control system should be able to behave exactly like the non-adaptive control system,
obtained when the dynamics of the processto be controlled and the disturbances are not sub-
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2 1.1. ADAPTIVE CONTROL

ject to any changes, aternatively when the process to be controlled is completely known.
Although achieving such a situation would be idedl, it is clear that the more the process dy-
namics and the disturbances are corrupted by perturbations, the less we can a priori expect to
achieve in terms of control. In other words, the less knowledge we have on this process, the
harder it isto control this system. Hence, such ideal goal had to be replaced by a milder one:
one ought to construct a control system showing 'reasonably good’ performance in spite of
uncertainty on the true system. Here, 'reasonably good performance’ certainly includes that
once the control design is achieved, the performance of the actual controlled system should
be close to specified desired performance. However, it is aso crucial that at any timeof the
design, the control system is defined and stable, in a sense that will be defined later in this
work. Already, many questions arise: how to practically design a controller so that the per-
formance of the unknown system converges to the desired performance, despite initial lack of
knowledge? If such a controller exists, beyond the guarantee of a nice asymptotic behavior,
can it also ensure that the control system shows an acceptable behavior at any time? If not,
what would be the ideal situation providing that at no time of the design bad behaviors are
avoided? Each of these three questions are now examined in the following subsections.

1.1.1 Thecertainty equivalence principle

Intuitively, the better the system to be controlled is known, the better a controller designed
on aguess of this plant may be expected to perform when applied to thisrea plant. Another
intuitive idea is that for the previous idea to be true, the uncertainty on the true system must
be sufficiently small. Aswe shall see later in Section 1.1.2: indeed, given two large uncer-
tainty levels, thereis no real guarantee that the guess on the system to be controlled obtained
for the lower of these two large uncertainty levels will be better than the guess obtained for
the higher uncertainty level.

Nevertheless, the idea consisting in relying on a guess of the system to be controlled to per-
form its control is known as the Certainty Equivalence Principland is the cement of awide
spectrum of classical adaptive control approaches[7], [14], [72]. At each time of the design,
based on the available knowledge on the true plant and on a selection law, one constructs an
approximation of this true plant, the modelalso called estimate This constitutes the iden-
tification step. Then, the identified model is used for on-line controller design without any
regards for errors between this model and the true system which generated the data. Further,
one applies the model-based controller to the real system and compare the performance of the
resulting closed-loop system with the desired control performance. If the performance mis-
match is not small enough, one then constructs the new model on the basis of the previous
estimate and the new data measurement, subsequently re-tune the model-based controller,
until the closed-loop performance is close enough to the desired one. It is clear that the task
targeted during such a strategy is to obtain a good controller. Since the controller is based
on an estimate of the plant, one way to obtain a controller that becomes good enough is
to decrease the model error. At the limit, the model would then converge to the real sys-
tem parameter and hence the model-based controller would approach the controller designed
on the basis of the true system. However, the certainty equivalence controller ignores the
plant/model mismatch and adapts its control action so as to meet the control objective for
the estimated system. Hence there is nor the guarantee neither a real probing of the system
to decrease the uncertainty. Thisissue, called the identifiability problem in adaptive conttol
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has been extensively studied in the system identification literature [91], [95]: due to lack of
internal excitation, the control law applied in closed-loop may make some of the unknown
system parameters invisible to the identification process. In turn, the identifiability problem
may result in control performances degradation [18], [43], [103], [90]. lonnaoul In this re-
spect, a major result is that the input, in order to yield a sequence of models leading to a
good control asymptotically, must be sufficiently exciting [43], [72], [18]. In addition, for
stochastic systems, it has been proved that in minimum variance adaptive control, despite the
fact that the estimate normally convergesto amodel that is different from the real parameter,
the model-based controller asymptotically equals the controller we would obtain when using
the exact system parameter [95], [97]. Moreover, it has been established that in the case of
adaptive pole assignment, the information one may obtain from the closed-loop behavior of
the system is sufficient to generate the proper sequence of control inputs [72],[91]. Hence,
in that case, even if the plant parameters are not exactly identified, the generated control law
asymptotically equals the control law we would have obtained on the basis of the complete
knowledge of the system. In thisthesis, the identifiability issue will not be further discussed.
We will mainly focus on the case of adaptive pole placement design.

1.1.2 Threeissuesin certainty equivalence adaptive control

Asdiscussed in the previous subsection, certainty equivalence iskey in most adaptive control
designs. We saw that under some conditions, which will be assumed to be satisfied throughout
thisthesis, the use of thisparadigm yields acontroller that asymptotically generatesthe proper
control input sequence, i.e., the control input sequence we would obtain when designing it
on the basis of the true system to be controlled. This is due to the fact that with time, the
uncertainty on the true system becomes small enough to yield amodel sequence resulting in
a good design. To be more specific, asymptotically, the time-varying model is controllable
(hence, at least stabilizable). Moreover the fixed controller based on the frozen model at each
time stabilizes the true plant asymptotically. However, when little information is available
on the real system, as it is common to be in the initial phase of an adaptive control design,
it is likely that the model is poor from a control point of view. Hence controllability of the
model and stabilizability of the model-based controller may not apply. This may cause severe
problems when using classical adaptive control design.

Pole-zero cancellation problem in adaptive control

As it turns out to be often the case in the initial phase of an adaptive control design, we
have very little prior knowledge on the level of controllability of the system to be controlled,
that is, the distance from this system to the set of uncontrollable systems. Hence, the model
provided by the update law that is defined by the adaptive control algorithm might be not
controllable. However guaranteeing the controllability of the estimated system is crucial,
since otherwise global stability of the adaptive scheme might be completely disrupted. Asa
matter of fact, to apply many well-established stability and performance results, one has to
suppose that the estimated model satisfies a uniform controllability assumption ([31], [99],
[101]). On the other hand, classical identification approaches ([35], [64], [72], [87]) do not
guarantee such a controllability property in the absence of suitable excitation conditions,
which is often the case in closed-loop identification. This issue, known as the pole-zero
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cancellation problem in adaptive contrattracted significant attention in the literature, in
stochastic and deterministic settings. In a stochastic setting, afirst way to view this problem
relies on the property that the sets of parameters corresponding to non-controllable modelsis
a proper algebraic variety. Hence the event of getting such a model during the finite time of
the identification process has probability zero [75], i.e., will never occur in practice. Thisisto
some extent true, however, ignoring the problem is unsatisfactory. Moreover, the probability
of getting an uncontrollable model can become positive in the limit and, to the best of our
knowledge, no result exists to indicate for which control laws this may occur.

A large body of theliterature in adaptive control analysis dealswith the pole/zero cancellation
problem in adaptive control. Some of the main approachesto face this problem are now listed,
without any claim of completeness.

e A first class of approaches consists of the a-posteriori modification of the estimate,
e.g., the least squares estimate, so that it stays in or converges to a set of controllable
systems ([30], [43], [68], [69], [92], [112]). This can be done by using properties
of its covariance matrix ([68], [69], [92]) or by projecting the estimate on a set of
controllable systems whilst assuring that the modified estimate inherits some useful
properties of the original estimate ([30], [43], [112]). In this manner, before using the
estimate for the control design, controllability of the model is secured. However, the
main drawback of this approach is its computational complexity which tremendously
increases with the order of the system to be controlled [69].

e A second family of approaches amounts in modifying the identification algorithm so
as to force the estimate to belong to an a priori known set of controllable models
containing the true parameters ([61], [62], [76], [87], [96]). The requirement of the
knowledge of a set of controllable systems containing the true unknown system is
however a significant limitation of such approaches, confining their use to the cases
where the parameter uncertainty is highly structured.

e A third body of approaches ([21], [82], [94]) results in keeping the system estimates
away from the uncontrollable models through application of exciting signals amongst
three types of signals: persistent, asymptotically vanishing or sporadically appearing
when necessary. Again, these approaches become computationally expensive as the
system order increases.

e Finaly, worth to be mentioned are alternative approachesin which other methods than
the classical certainty equivalence strategy are used to design the controller. Such an
approach, presented in [89], is a cyclic switching control strategy, steering periodi-
cally the unknown system according to a specified logic. Another approach [6] liesin
dternative parameterizations of the system to be controlled such that the problem of
avoiding non-controllability is avoided or non-existent.

These reported methods offer a clear analysis of the unavoidability of the pole-zero cancel-
lation problem in adaptive control and propose various solutions to face this problem. Their
main drawback, however, remain in their computational cost or the assumption that the sys-
tem to be controlled belongs to aknown convex set of controllable systems.
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Non-stabilizing model-based controller

If the uncertainty on the system to be controlled is too large, there is a priori no reason to
expect that amodel of the system will lead to a controller stabilizing the true unknown plant.
The well-documented possibility of this event is shown in the adaptive closed loop behavior
through unacceptable transients ([4], [7]). An example of such a behavior in the case of
pole placement of first order systems is postponed to Section 5.5.2 in Chapter 5. In that
example, we show that for any arbitrarily chosen integer N, and for any desired stable pole
o, and for any initial conditions of the system, there exists an initial guess #(0) on the real
unknown parameter vector §° such that classical adaptive pole placement in « as cited in
[72] yields at least N consecutive model-based controllers that are arbitrarily destabilizing
thereal system. From a practical point of view, agood or bad transient behavior of a control
system might be the criterion deciding on the quality of the controller, hence it is crucia
to prevent bad transients to occur. This is the reason why the idea of combining classical
adaptive control and robust control design appeared ([46],[54], [61], [83], [115]). Rather than
designing the controller on the basis of the model irrespective of the model/plant mismatch as
it isdone in standard certainty equivalence control strategy, one designs a robustcontroller,
i.e, acontroller that stabilizes any frozen plant in the uncertainty set. However, as it is
shown in [46], the requirements of robustness and adaptation often conflict in an adaptive
control framework. Therefore, the design of dual controllers, optimal from both estimation
and control points of view appears very difficult.

Time-varying model

In an adaptive control design, the model is updated at each iteration. Hence the model-based
controller is time-varying, and these time-variations are necessary since they are the key to
hopefully further improve the controller performance. Now, let us suppose that the uncer-
tainty on the system to be controlled isinitially small - even if this cannot be verified a priori
- s0 that the chosen model at each iteration is controllable and leads to a controller that sta-
bilizes the unknown plant, this at any frozen time of the design. Even in this’ideal’ case, it
iswell known that the time-varying closed-loop system might not be asymptotically stable
if the time variations are too fast [56], [7], [4]. Therefore, loss of asymptotic stability of
closed-loop control systems based on the certainty equivalence approach may be induced by
the inherent adaptation process they involve. To prevent this phenomenon to occur, the adap-
tation process should be slow enough to guarantee that the closed-loop system stays within
some time-varying stability bounds. Such stability bounds are related to the notion of com-
plex structured stability radius [51]. If the model is chosen so that the Euclidean distance
between the certainty equivalence controller and the controller we would obtain on the basis
of the unknown system is smaller than the complex structured stability radius of thisunknown
plant, then time-variations of the model will not affect stability of the closed-loop adaptive
system [51], [52]. However, since the system isunknown it is not possiblein practice to com-
pute apriori its complex structured stability radius. Aninteresting approach guaranteeing that
the time variations will not destroy the stability of the adaptive schemeisfoundin[32]: ina
switching control system, the switching rate is owed down so as to avoid switching too fast
with respect to the system’s settling time, hence destabilizing. Thisis achieved by adopting a
so called dwell-time switching logi¢48], where a dwell-time is forced between consecutive
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switching instants. Moreover, this dwell-time is adaptively selected on the basis of available
data measurement. According to the results of [49], global stability is secured provided that
the switching is sufficiently slow on averagdn these reported approaches, this interesting
concept of dwell-time has been developed for hybrid control systems: the controller parame-
ters are updated when a new estimate of the process parameters becomes available, similarly
to the certainty equivalence adaptive control paradigm, but these events occur at discrete in-
stants of time. Moreover, in these approaches, the set of candidate controllers is supposed to
be finite and parameterized in a discrete fashion. However, it is not clear how to apply such
ideato the case where the controller is continuously parameterized and therefore we will not
adopt this approach in the remainder of thisthesis.

1.2 Theessence of strong robustness

It appears from our discussion in Section 1.1 that classical adaptive control suffersfrom three
drawbacks. Aninitial insufficient knowledge on the system to control may result in the selec-
tion of an uncontrollable model, leading to a paralysis of the control system. Or, the model
could lead to a controller that does not stabilize the true plant, in which case undesirable
transients may be induced in the closed-loop system behavior. Finally, the time-variations of
the model-based controller might destroy the asymptotic stability of the control system. This
discussion immediately leads to the following question: how should classical adaptive con-
trol schemes be modified so that these three undesirable phenomena are avoided? To the best
of our knowledge, each of the three problems discussed in Section 1.1.2 isin itself compli-
cated and so are the corresponding solutions that have been reported in the literature. Hence
a direct modification of the estimates obtained by using classical algorithms, combining the
various solutions proposed in the literature to these three fundamental problems, so that they
meet the three critical properties during adaptation might be aformidable task, and we do not
adopt such approach. Instead, our objective is to come up with a different approach, which
seeks to overcome the above difficulties, while retaining the advantages and the fundamental
ideas on which classical adaptive control is based.

Our idea is as follows. Until the danger of meeting the three problems mentioned above
exists, the algorithm would focus on gathering information on the unknown system. Then,
when enough information is obtained to guarantee that this danger is avoided, classical adap-
tive control would be applied. In this line of thought, we ask ourselves the following ques-
tion. What property should the set of all possible models have so that the three previous
undesirable situations cannot occur at any time when performing adaptive control? Clearly, it
follows from our previous discussion that the minimum property required during adaptation
is the following: the models should keep controllability. Moreover, at each time, the frozen
model-based controller should stabilize the real system to be controlled. Finally, adaptation
should be slow enough to secure global stability of the adaptive scheme. However, the rea
system is unknown hence it is a priori not possible to check whether at each time instant the
model-based controller stabilizes the true plant. Instead, assuming that at each time an uncer-
tainty level on the system is given, what may be checked is whether at each time instant the
model-based controller stabilizes any other model in the uncertainty set. In that respect, our
approach is somehow connected to the concept of robust adaptive contrgbroposed in [54],
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[55], [46]. Because the true system is unknown, how slow adaptation should remain cannot
be specified apriori sinceit depends on the unknown system to be controlled. However, what
may be checked is whether the time-varying closed-loop system formed with any system in
the uncertainty set and any sequence of controllers in the set of controllers associated to the
model class stays stable. When the uncertainty set only contains controllable systems and
has this property, we cal it strongly robus{25], [29]. The combination of identification of
a strongly robust uncertainty set and adaptive control design will be called strongly robust
adaptive controbnd is our main concern throughout this thesis. Aswe shall see in Chapter
5 into details, this approach splits in two phases. In the first phase, because no conclusion
can be drawn on strong robustness of the uncertainty set, focus is on identification of the
model set, in such away that it will surely become strongly robust. Once strong robustnessis
achieved, the system switches to the second phase where a classical control design approach
based on certainty equivalence is applied. The main philosophy behind our approach may be
thus summarized as follows:

"Do not start control before you are sure that the control action will not deteriorate the sys-
tem performance”.

This idea may be not too far from real life, since we al might have experienced one day a
situation where a wrong guess on a system may make us act in a way that contradicts with
what we actually want to do.

Now, the notion of strong robustness being introduced and motivated in an adaptive control
framework, many questions arise. To begin with, do strongly robust sets of systems exist?
A negative answer to this answer would not allow us to go further. If existence of strongly
robust sets of systems exist, how to design an identification input yielding a strongly robust
uncertainty set in practice? Back to an adaptive control framework, the strongly robust adap-
tive scheme should decide whether effort has to be put on identification or control on the
basis of strong robustness of the uncertainty set. How to construct a criterion to indicate
when the strong robustness property is reached? These are the main issues that will guide us
throughout this thesis.

1.3 Thesisoutline

We now briefly describe the content of each chapter of the thesis. After presenting the math-
ematical framework of our work in Chapter 2, Chapter 3 deals with the notion of strong
robustness as a mathematical object. Further in Chapter 4, an identification problem is ex-
amined in a genera context. Next, Chapter 5 exploits the results of the previous chapters
to develop a general algorithm for strongly robust adaptive control. Finaly, in Chapter 7,
conclusions and recommendation for further research are given.

Chapter 2 - Mathematical framework

The mathematical ingredients used in this thesis and our working assumptions are presented.
In particular the class of systems and the class of the control objectives that we consider
are defined. In addition, we discuss two issues on parameter estimation: set-membership
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identification and orthogonal projection. These two well-known notions will be exploited in
Chapter 5.

Chapter 3 - Strong robustness and related notions

The notion of strong robustness is studied as a mathematical property of sets of systems
in the class of systems defined in Chapter 2. Various notions such as strong robustness,
time-invariant strong robustness, strong quadratic robustness and weak strong robustness are
defined and illustrated by simple examples. Further, we investigate the following question:
given a set of systems in the class of systems defined in Chapter 1, what conditions this
set must satisfy to enjoy the above strong robustness properties? Such conditions can be
expressed in a form that involves the complex and real structured stability radii for Schur
matrices introduced in [51]. Next, using our previous discussion, we show that around any
system in the class of systems defined in Chapter 2, there exists an open strongly robust
neighborhood of this set which is a subset of controllable systems. Afterwards, we focus on
the following problem: given aset of systemsin our class of systems, how can we practically
test whether this set is strongly robust or not? Finally, the last section is devoted to the notion
of weak strong robustness and we show how this notion may be used in an adaptive control
framework.

Chapter 3 isbased on [25], [29], [26].

Chapter 4 - Set-member ship identification for control

An identification input is designed with the objective to yield a bounded uncertainty set with
decreasing size, in the framework of set-membership identification for strongly robust adap-
tive control. Theaim isto identify an uncertainty set which becomes strongly robust in finite
time. The key ideaisto consider a 2n-periodic input sequence, and find sufficient conditions
on the 2n design parameters so that the uncertainty set is bounded. Then, conditions for a
decreasing size of the uncertainty set are established. Combining these two sets of conditions,
we then explicit the identification input sequence providing a strongly robust uncertainty set.
In this chapter, the approach is as follows. The input-output signals are decomposed along
two components:. the signalswe would obtain if they were 2n-periodic (the steady-state case),
and the signals resulting from non-steady state initial conditions and from the modeling error.
Theinput design is then illustrated by means of two simple examples.

Chapter 4 isbased on [28].

Chapter 5 - Strongly robust adaptive control

Exploiting the results established in Chapter 3 and Chapter 4, a strongly robust adaptive
control system is constructed. This adaptive scheme splits in two phases, the identification
phase, where off-line identification is carried on according to the design proposed in Chapter
4, and the control phase, where a certainty equivalence-based strategy is adopted. The switch
from the first to the second phase is orchestrated by the strong robustness criterion devel oped
in Chapter 3: aslong as no conclusion can be drawn on strong robustness of the uncertainty
set, effort is on identification. Once strong robustness is achieved, then control starts. After
describing the general scheme of strongly robust adaptive control, analysis of the algorithm
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is provided. Then attention is paid on pole placement design. Strongly robust adaptive pole
placement is analyzed in details, and illustrated by means of a simulation example.
Chapter 5 is based on [27].

Chapter 6 - Conclusions and further research

Conclusions on our approach are given, with a particular attention to its effectiveness but also
limitations. The working assumptions made throughout this work are discussed so as to see
if after further investigation they could be relaxed or if they are fundamental to guarantee the
presented results. Finally, recommendations of the author for further research are given.



10

1.3. THESISOUTLINE




Chapter 2

M athematical framework

This chapter presents the mathematical ingredients used in the remainder of this thesis. Since
our ultimate goal is to develop a control strategy, we first define the class of systems to which
our discussion will apply, as well as the class of control objectives we will consider. Further,
we introduce a central notion in system identification theory that will be of great relevance in
the further chapters of this thesis: set-membership identification.

2.1 Classof objects

The complexity of most of the systems around us defies all attempts to obtain what we would
call "an exact model” of these systems. In addition, while learning about the real system,
there are probably some discrepancies between the information to be known and the actual
measured information, known as measurement errorsHence, in many applications, one
adopts a trade-off between optimality and complexity of the estimated system: one is satis-
fied with an approximate description of the system, provided that it adequately describes the
features of the system one isinterested in. This approximation defines the model

Now, to search for an approximate description of a completely unknown system does not
make sense, and it is reasonabl e to assume that the designer has some a-priori information on
this system. Such information are usually of two kinds: the model structure and a measure of
the discrepancy between this estimated structure and the actual one, the uncertainty
Formally, in alarge body of literature devoted to system theory, it is assumed that the dynam-
ical system we areinterested in is described in discrete-time by an equation of the form:

y(k) = Wr_1(6°) + 8(k), (2.1)

where k is the discretized present time, #° denotes the unknown true parameter vector, y(k)
represents the available actual data measurement at time &, ¥, _; is a known operator indi-
cating how the present measurement depends on 6° and the previous measurements, and &(k)
accounts for the uncertainty affected the true system, due to modeling error and measurement
error. The system without uncertainty (i.e., 5(k) = 0, Vk) and with an estimated parameter
vector (i.e., #° replaced by the model parameter vector 6) iswhat we call the model

11
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2.1.1 Modesand their representations

In thisthesis, it is assumed that in the case where the system we are interested in would not
be affected by uncertainty (i.e,, 6(k) = 0, Vk in (2.1)), the data measurements would be
generated by a discrete-time linear and time invariant SISO system of order n. Hence, the
operator W1 in (2.1) isalinear operator. We define the class of models as follows.

Definition 2.1.1 (Models) P, denotes the set of linear time-invariant systems of order
described in discrete time by the equation:

y(k+1) = 0" ¢(k), Vk, (2.2)
where¢(k) represents the regressor vector given by
o(k) = (—y(k), -, —y(k —n+1),uk), - ,u(k —n+1))T eR*™  (2.3)
denoting byu, y the input and output sequences respectively, and where
0= (an—1, " ,a0,by_1, -+ ,by)* € R*" (2.4)
denotes the parameter vector.

Notation 2.1.2 To keep the notation simple, any model in P,, described by (2.2) isassociated
with its parameter vector 6 defined in (2.4). Inthe sequel ” 8 € P,,” should beread as” the
system in P,, parameterized by 6 according to (2.2), (2.3), (2.4)".

Now, the description of modelsin P,, is not unique and we will use different representations.
In particular, any model in P,, described by (2.2), (2.3), (2.4) has an equivalent description in
term of input/output difference equatid@3] defined as follows.

Definition 2.1.3 (Modelsin input/output description) Consider the system defined(By),
(2.3), (2.4). This system is completely defined by its input/output difference equation:

Ag(o)y = Bo(o)u, (2.5
whereo denotes the shift operatosrw(k) := w(k + 1) and the polynomialsiy € R"[¢]
andB, € R"~1[¢] are given by

Ap(€) =€ +an 1€+ Fag (2.6)
By(&) = bp1&" "'+ + bo.

Any model in P,, described by (2.2), (2.3), (2.4) has an equivalent input/state/output descrip-
tion [93] defined as follows.

Definition 2.1.4 (Modelsin input/state/output description) Consider the system defined by
(2.2), (2.3), (2.4). This system is completely defined by its input/state/output description
(A(9), B(0),C) defined as follows:

2k +1) = A()z(k) + B(O)u(k) @.7)
y(k) = Ca(k),
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whereA(f) € R?—1x2n=1 B(9) € R?"~1 andC € R*(?"~1) are given by

[ —ap_q -+ o+ —a; —ag bp_o -+ -+ by by ]
1 0O - 0 0 0 R
. . . . .
0
A(0) = 1 28)
0 0 0 0 0 0
0 1
: 0
: : 0
L0 0 0 0 1 0|
B@)=[byy 0 - 01 0 --- o 0]" (2.9)
C=[10 « - 0], (2.10)
and the non-minimal state vectorc R2"~1 is given by
w(k)=[ ylk) - ylk—n+1) uk—1) - ulk—n+1)]" (2.11)

In our work, controllable systemsin P,, and asymptotically stable systemsin P,, will play a
fundamental role. We now introduce the two induced subsetsin P,,.

Definition 2.1.5 (Controllable models and asymptotically stable models) The set of con-
trollable systems irP,, is denoted by,, and the set of asymptotically stable system®,n

is denoted byS,,. Controllability here refers to the case where no pole/zero cancellation
phenomenon can occur.

We have the following [93]:

Theorem 2.1.6 (Controllability) Using the notation introduced in Definition 2.1.3 and Def-
inition 2.1.4 , the following statements are equivalent:

1. The system defined [8:2), (2.3), (2.4) is controllable.
2. rank[\T — A(9) B(#)] =2n —1,forall A € C.
3. rank[B(0) A(0)B(0) --- (A(6))>"2B(#)] = 2n — 1.
4. ged(Ag(€), Bo(€)) = 1.

Similarly, we have the following stability characterization [93]:

Theorem 2.1.7 (Asymptotic stability) Using the notation introduced in Definition 2.1.3 and
Definition 2.1.4 , the following statements are equivalent:

1. The system defined [:2), (2.3), (2.4) is asymptotically stable.
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2. A(0) is strictly Schur stable, i.edet(A] — A(f)) =0, e C= |\ < L.
3. Allthe roots ofdy(€) are inside the open unitdisc, i.edy(A) =0, A € C = |\| < 1.

Notation 2.1.8 In accordance with Notation 2.1.2, we will use the notation 6 € C,, (respec-
tively 6 € S,,) to refer to the system defined by (2.2), (2.3), (2.4) under the assumption that it
is controllable (respectively asymptotically stable).

2.1.2 Actual system

We now describe the complete true system to be controlled, relaxing the assumption that the
uncertainty ¢ in (2.1) is zero.

Definition 2.1.9 (Actual system) We assume that the system we are interested in, from which
the input-output measurements are obtained, is described by:

y(k+1) = ()T p(k) + 6(k), VE, (2.12)

where for allk, y(k) is the actual measured output at tirhed® € C,, N S,, is the unknown
system model of the for(@.4), ¢ is the regressor vector given {2.3) composed of known
actual measurement input-output dat&), y(i),: < k andd(k) is the uncertainty at timé.

In this thesis, we will make the following assumption on the uncertainty sequence d.

Assumption 2.1.10 (Unknown-but-bounded uncertainty) The uncertainty sequencein
(2.12) is unknown-but-bounded with a known bound, i.e., there exist two real constants
such thaty < § andd < §(k) < 9, Vk.

Remark 2.1.11 Assumption 2.1.10isoften simplified in the literature by taking [0 (k)| < d1,
Vk, where 6; = max{|d], |d|}, which only increases the conservatism of the upper and lower
bounds on .

Remark 2.1.12 In the description (2.12), the true parameter vector #° corresponds to a sys-
tem in P,, which is controllable and asymptotically stable. The motivation of these two as-
sumptions, aswell as the motivation of Assumption 2.1.10 on the structure of the uncertainty,
are postponed to Chapter 5 (see Remark 5.2.4).

2.1.3 Controllers

In this thesis the main goal is to discuss a control problem, and therefore the class of con-
trollers we are going to consider is one of the central notions in our work. The notion of
control objectiveis taken in its wide sense, that is to improve performance of the consid-
ered system (2.12), in away that is left unspecified for the moment. However, we make the
following assumption.

Assumption 2.1.13 (Controllers) There exists a single-valued continuous map

f:0eCy— f(H) e RP*CEn1) (2.13)
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that assigns any model ii€,, defined by(2.2), (2.3) and (2.4) with its controller
f(0) € R"*(27=1) leading to the control law

u(k) = f(0)x(k),Vk, (2.19)
wherez is the state vector defined (8.7), such that the closed-loop system defined by
x(k+1) = (A(9) + B(9)f(0))x(k) (2.15)
y(k) = C(k)
is asymptotically stable, i.e., the dynamic matfitd) + B(6) f(0) is strictly Schur stable.

Remark 2.1.14 The assumption that the map f is continuousis motivated later in thisthesis
(see Chapter 3, Theorem 3.2.12).

More specifically, pole placement in stable poles and linear quadratic control will be the con-
trol objectives that will be mainly considered. For this reason, we now give a brief overview
of these two control design approaches and show that both satisfy Assumption 2.1.13.

Pole placement in stable poles

Consider 0 € C,, asthe system to be control. The problem of pole placement in some stable
poles consists of designing an input law of the type (2.14) such that the poles of the resulting
closed-loop system (2.15) (the eigenvalues of the matrix A(0)+ B(6) f(9)), arelocated in the
roots of a pre-specified strictly Schur-stable desired closed-loop characteristic polynomadl
the form:

2n—1
) = JJ - ), (2.16)
=1
with
loyi| <1, Vi=1,---,2n—1. (2.17)

For agiven system defined by (2.2), (2.3) and (2.4) such that § € C,,, this control objectiveis
achieved by a unique controller f(6) given by [93]:

u(k) = F(A(9), B(0))x(k), Yk, (2.18)
where z(k) isgivenin (2.7), A(9) and B(#) are givenin (2.9), (2.10) and
F:{(A, B) e R®n=1)xn=1) y REn=1)x1. (4 B)iscontrollable } — R**"~1 (2.19)
is defined by Ackermann’s Formula[72]:
F(A,B)=—[0--- 01][B AB --- A*"2B]II(A), (2.20)

where IT is the desired closed-loop polynomial defined in (2.16). The closed loop system is
hence defined by:

a(k +1) = (A(0) + B(O)F(A(0), B(6)))x(k) (2.21)
y(k) = C(k),
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having its poles exactly in the desired poles «;, . = 1,--- ,2n — 1. Hence it follows from
(2.17) that the closed-loop system (2.21) is asymptotically stable. Finally, it follows from the
expression (2.20) that themap f : C, — R'*(2»—1) assigning to the system parameter 6 the
control gain f(6) = F(A(0), B(0)) is continuous. Therefore, the problem of pole placement
in stable poles defined by (2.16) and (2.17) satisfies Assumption 2.1.13.

Linear quadratic control

Consider 6 € C,, asthe system to be controlled. The Linear Quadratic Control problem ap-
plied to the system (2.7) consists of designing an input law of the type (2.14) which minimizes
the performance index:

J(u,2(0) =Y (x(k))"C" Ca(k) + p(u(k))?, (222)
k=0
where z(k) is given in (2.11), C € R (?»=1 jsgivenin (2.10) and p > 0 is fixed by the
designer. The solution of this problem is unique and given by [7]:

u(k) = F(0)a(k), Yk, (2.23)
where f(0) isgiven by
1(6) = —%(B(@)TP(&» (2.24)

where P(#) = (P(6))" > 0 isthe unique positive semi-definite solution in R(2»—1)x(2n=1)
solution of the algebraic Riccati equation:

(A0)TP() + P(H)A() + CTC — %P(G)B(G)(B(@))TP(G) =0, (2.25)

with A(#) and B(#) as defined in (2.9) and (2.10) respectively. Moreover, the closed system
(2.15) isasymptotically stable, i.e., the eigenvalues of the matrix A(6) — %B(G)(B(&))TP(H)
are in the interior of the unit disc. It follows from (2.24), (2.25) that themap f : C,, —
R'*(2n=1) assigning to the system parameter 6 the control gain f(6) = —1(B(0))" P(6) is
continuous. Hence the Linear quadratic control problem with the performance criterion given
in (2.22) satisfies Assumption 2.1.13.

2.2 Set-member ship identification

As discussed in Chapter 1, adaptive control typically deals with partially unknown systems.
When the uncertainty on this system to be controlled is small enough, certainty equivalence
control design is generally adopted, i.e., the identified model is used for on-line controller
without any regard for the model errors [7], [72], [54]. However, if the uncertainty level
is unknown, a preferred approach consists in gathering information on the system through
input-output measurements, so as to reduce the uncertainty level recursively, until certainty
equivalence can be applied. In this case, rather than estimating a single model, one identifies
the set of al model candidates, i.e., the models that are consistent with al the available data
measurements. This method, called set-membership identificaticamnd introduced in [104],
has become a central issue in identification theory.



CHAPTER 2. MATHEMATICAL FRAMEWORK 17

2.2.1 Membership set: computation

Contrary to identification methods involving point estimation of a single model, set mem-

bership identification consists of estimating the set containing all the models with a given

structure that are consistent with the available data measurements, the model structure and

the prior knowledge on the uncertainty, the membership set

Clearly, the way this set is computed depends on the assumed model structure ([16], [17],

[80], [84]) and on the characteristics of the uncertainty ([9], [109], [110]). However, alarge

number of approachesin set-membership identification literature consider time-invariant SISO
linear systems and assume the uncertainty to be unknown-but-bounded with known bounds,

according to Assumption 2.1.10 ([11], [12], [9], [39], [ 78], [105], [81]).

Let us suppose the system under consideration to be of the form (2.12). Suppose that the
uncertainty sequence ¢ satisfies Assumption 2.1.10. We have that al system modelsin P,
consistent with the kth measurement (y(k), ¢(k — 1)) belong to the set

G(k) = {0 € Pn:d <y(k)—0Tp(k — 1) <6}, (2.26)
Thisset G(k) isthe hyperstrip in R?" bounded by the two parallel hyperplanes:

H(k) = {0 € Py : y(k) — 07 p(k — 1)
H(k) = {0 € Py - y(k) — 0T p(k — 1)

} (2.27)
} (2.28)

(SIS

Hence, for afinite number of given measurements (y(¢), ¢(¢ — 1))i=1,... %, the membership
set is given by

G(k) = (900, (2.29)

where G(i), i = 1,--- ,k isgiven in (2.26). It is worth to note that a Matlab toolbox, the
Geometric Bounding Toolbd¥07] is available for the computation of the membership set
givenin (2.29).

2.2.2 Membership set: properties

We now focus on various properties of the membership set given by (2.29).

Convexity and closeness

An interesting property in set-membership identification is that the membership-set com-
puted according to (2.29) is convex and closed. Now, if the system to be identified satisfies
Assumption 2.1.9, then it is controllable and asymptotically stable, i.e., the unknown system
parameter 6° is element of C, N S,,. Therefore it seems that a”good” estimate should also
have these two properties, in which case they should be within the set G* of parameters that
are consistent with all the available measurements and the prior knowledge on the real system
defined by

G (k) =G(k)NC, NSy, VE. (2.30)
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However, because the setsC,, and S,, of controllable and asymptotically stable systemsin P,
are nor convex [114] neither closed in general, the set G* (k) defined in (2.30) might not be
convex nor closed. Yet most parameter estimation methods are based on convex minimiza-
tion problems, such as the least squares identification algorithm [63], the gradient projection
algorithm [54], or the orthogonal projection algorithm [15]. Hence convexity and closeness
of the model set are desirable properties, which is the reason why one is often satisfied with
an estimate 6 € Q(k), Yk, even if this model is not controllable or asymptoticaly stable.
Then, of course, if the control design involves this model, the model has to be replaced by a
controllable one. This matter is further discussed in Chapter 3 (Section 3.3.1).

Width of hyperstrips

Thewidth of the hyperstrip G (k) containing al the parameter vectors consistent with a given
measurement (y(k), (k — 1)) isafunction of the uncertainty on this measurement.
Suppose the system to be of the type (2.12), such that the uncertainty sequence § satisfies
Assumption 2.1.10. Provided that ||¢(k — 1)|| # 0, the width of the hyperstrip G(k) obtained
on the basis of the measurement (y(k), ¢#(k — 1)) and defined in (2.26) is given by:

0—6
—_— (2.31)
llp(k — 1)
Remark 2.2.1 If the uncertainty is zero, i.e., 6 = 0, then the hyperstrip G(k) computed in
(2.26) isreduced to ahyperplane, i.e., (2.31) isreplaced by W(k) = 0.

W(k) =

The following result immediately follows from (2.31).

Property 2.2.2 Consider any given system of the fof@r2) such that the uncertainty satis-
fies Assumption 2.1.10.Then we have that

if klim [lo(k)|| = oo then klim W(k) =0, (2.32)
whereW (k) is given in(2.31).

Boundedness of the member ship set

Since the membership-set is computed as the intersection of hyperstripsin R2?, it must be ob-
tained on the basis of at least 2n non-parallel hyperstrips. Now, noticing that two hyperstrips
G(i)and G(j), ¢ # j, arenot paralel if and only if ¢(i) and ¢(j) are linearly independent,
we have the following property.

Property 2.2.3 The seté(k) defined in(2.29) is bounded if and only if the two following
statements hold:

i. k>2n;

ii. there exist2n disctinctintegers:; < k,i =1,--- ,2n, and such that
det([¢(k1) -+ @(kan)]) # 0. (2.33)

Equation (2.33) is an excitation-type condition.
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Radius

We suppose that the uncertainty is structured according to Assumption 2.1.10. After £ mea-
surements (y(i), ¢(i — 1)),i = 1,--- , k, forany k > 1, an outer bounding ball for G(k) can
be estimated as follows. For al 6 € G(k), and for al i < k, we have:

6 <y(i)—0"p(i —1) <o (2.34)

Since#° € G(k), Vk, then (2.34) is satisfied by 6°. Hence, for al 6 € G(k), andfor all i < k,
we have:

§-0<(0"-0)"p(i—1)<b6—4. (2.35)
Denoting by 6 = 6° — # the model error, and introducing the notation
6, =0-8>0, (2.36)
(2.35) can be rewritten as; 5 B
07 (i — 1)] < 41 (2.37)

Therefore, for al 6 € G(k), and for all i < k, if ||¢(i — 1)]|. cos(f, ¢(i — 1)) # 0 then
o1 W(i)

16]] < = —— , (2.38)
l16(i = D)l|[cos(B, ¢(i = 1)) |cos(d, ¢(i — 1))
where W(i) isgiven by (2.31). Hence, if
max{||é(i — 1| cos(9, 6(i — 1))} # 0, (2.39)
then the parameter vector 6 liesin the ball with center ° and radius p(k) where
p(k) = min W) (2.40)

i<k | cos(f, ¢i — 1))|

Geometrical interpretation : (2.38) can be interpreted geometrically (see Figure 2.1) as
follows. For any i > 1, let §; be an element of G(i) and §; = ; — 6°. Let £(6;) denote the
hyperline going through 6; and 6°. Note that the vector ¢(i — 1) isnormal to the hyperplanes

H(i) and (i) defined in (2.27). The condition ||¢(i — 1)||. cos(# )i, d(i — 1)) # 0 issatisfied
if an only if ||¢(i — 1)|| # 0 and the vector 6; is not normal to ¢(i — 1). Provided that
this condition holds, the quantity p; = W(i)(| cos(éi, é(i — 1))~ in (2.38) represents the
largest distance between the two points 8; and 6°, expressing the constraint that 8; and 8° are
in £(6;) N G(i). Finaly, in (2.40), the quantity p(k) = min;<; W(i)(| cos(d, ¢(i — 1))|) "
represents the largest distance between two points §; and 69, expressing the constraint that 6;
and 6° arein L(0;) N G(i), Vi < k.

Note that the constant &, defined in (2.36) isknown and the term ¢ (i — 1) is measured at any
timei < k. However, since  is unknown, the expression of p(k) in (2.40) is not computable
a-priori. However, the result (2.40) clearly shows that if the condition (2.39) holds for all
k > 1, then we have

if k-higo W(k) = 0, then klln;o p(k) = 0. (2.412)

Hence, the following property follows from Property 2.2.2.
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R (A
Pi = Toos(@r,6(i—1)))

Figure 2.1: Membership set: outer bounding sphere

Property 2.2.4 Consider any given system of the fof2rl2) such that the uncertainty satis-
fies Assumption 2.1.10. Suppose the input sequence to be such that that the c{haa)on
holds for allk > K, K > 0. Then we have:

if klim l|o(k)|| = oo then klim p(k) =0, (2.42)

whereW (k) is given in(2.31).

Property 2.2.4 indicates that if the identification input sequence satisfies the condition (2.39)
and yields regressors with arbitrarily large magnitude, then the membership set G(k) con-
verges to the point set {6°}.

Outer bounding sets

A Matlab toolbox is now available to compute the exact polytopic membership set G (k) given
in (2.29) on the basis of measurements [107]. However, this recursive computation is quite
cumbersome and rather often, atight approximation of this set is sufficient to describe the set
of models that are consistent with the available data measurements [59], [5]. Hence, many
approaches are based on the computation of an outer-bounding set of G(k), leading to easier
computation. Of course, this outer bounding should be "tight” in order to be a good approx-
imation of G(k), with aminimal size or volume. This idea, illustrated in Figure 2.2, gave
rise to the concept of optimal bounding sets, such as optimal bounding orthotopes [79], or
the more popular optimal bounding ellipsoid§OBE) [39], [34], [98]. The recursive compu-
tation of optimal bounding ellipsoids can be done according to various ellipsoid algorithms
[100], [23], [19], [66], [58], [98]. The central idea of these algorithmsis the computation of a
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Outer bounding orthotopes Outer bounding ellipsoids

Figure 2.2: Membership set: outer bounding sets

supporting halfspace of one constraint set. When intersecting with the current ellipsoidal ap-
proximation to the membership set, the halfspace should provide maximal volume reduction
in the approximation. It can be shown that good convergence properties of these algorithms
would imply that the outer-bounding ellipsoids asymptotically approach the membership set
in some meaningful sense. Moreover, it has been shown that the centroid of these ellipsoids
can be derived as a solution of a certain constrained |east square problem that is computation-

ally cheap.

To illustrate this concept of outer bounding ellipsoidal approximation of the membership set
in our framework, let us suppose that we have obtained 2n distinct measurements
(y(ki),p(k; —1)),i=1,--- 2n,and ky < ky < --- < ko,. Let us suppose the bounded-
ness condition (2.33) is satisfied, implying that the membership set G(k-,,) is bounded.

Initial outer bounding ellipsoid: the first step of the classical ellipsoid algorithm would
consist in computing an ellipsoidal set which contains G (k2,, ), corresponding to the following
problem.

Problem 2.2.5 Find (P,w) with P = PT € R?*"*?" andw € R?" such that
Glkan) C{O: (w—0)TP  (w—0) <1} (2.43)
Such a solution always exists, since G (koy,) is bounded, and the set
E={0:(w—0)"P (w-0)<1} (2.49)

is then an outer bounding ellipsoid for G(ks,,). w is the center of the ellipsoid £ and the
positive definite matrix P gives the "size” and orientation of £ [23]: the square roots of the
eigenvalues of P are the lengths of the semi-axes of £. The volume of £ is given by

Vol(£) = Vo/det(P), (2.45)

where V), denotes the volume of the unit ball in R?".
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Recursive optimal outer bounding ellipsoid: at each new measurement (y(k), ¢(k — 1)),
k > ko, + 1, anew elipsoid bounding the intersection G(k — 1) N G(k) is computed, where
G(k) isgivenin (2.26). Since G(k) can be seen asthe intersection of the two halfplanes

Hy= {0 €R> : y(k) — 0Tp(k — 1) > 0} (2.46)
Hy={0 P, :y(k) - 07o(k —1) <3} (247)

the problem is to compute an outer bounding ellipsoid for the intersection of the ellipsoid
£ defined in (2.44) and the two closed halfplanes H; and H,. In this respect we have the
following result [41].

Lemma 2.2.6 (Minimum volume bounding ellipsoid) Let N > 2 and let€ c RY, be an
ellipsoid with centerw and described by the positive definite matfix Also, letH be the
closed halfspacéz : a”z < 8}, a € RY and3 > 0. The minimum volume ellipsoifi
bounding the intersectiofi N H is described by

E={zeR™: (z-0)TP oz —-0) <1} (2.48)
. Pa . PaaT P
where
1+ N Ty — N2(1 - a? 2(1+ N
poliNe oo Nza) 2N o
N+1 VaT Pa N2 -1 (N+1)(1+«)

Fora>1,ENH = (andfora < —1/N, € = £. For —1/N < a < 1, the ratio of the
volume of¢ to the volume of is a decreasing function and is given by

r(a) = (W (1—r)"2, (251)
wherep and x are given in(2.50).

Lemma 2.2.6 provides a way to compute recursively the smallest ellipsoid outer-bounding
the membership set.

2.2.3 Mode sdlection

The purpose of set-membership identification is to provide us with the set of al model can-

didates to represent the real system. Now, in a more general adaptive control scheme, one

usually desiresto update a model point, on the basis of which the controller is designed using

the certainty equivalence principle. Supposing that the membership set is computed at each

measurement, it is natural to choose this model in the membership set, in such a way that

if the new measurement does not falsify the present model, then this model is not updated.

Conversely, if the new measurement does falsify the present model, then the model is updated

in a new model which is closer to the real unknown system. A large part of the approaches

following thisideainclude the celebrated least square$L S) or, more generally, the weighted
least square$WLS) agorithm [2], [77].
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L east squares algorithm

For agiven set of data (y(i), (i — 1)),i = 1,-- - , k, the WLS estimate 0, is the solution of
the minimization problem

k

O = arg mein;qi@(i) — 0" ¢(i — 1)) (252)

where the terms ¢; are nonnegative weights. This algorithm has the great advantage to beim-
plemented recursively asfollows. Given the estimate at time &, 0, and the new measurement
(y(k + 1), ¢(k), the new RWS estimate is computed by

Qer1Pro(k)
L+ gry1(p(k)T Pro(k)

where the matrix P, € R?"*2" js computed recursively by

Py = Py — Lt BOBOWT P (2.54)

L+ gry1(p(k)T Pro(k)
Another advantage of this WLS estimate recursive computation is that it does not need any
a-priori assumption on the uncertainty ¢ in (2.12). However, it is well known that the WLS
estimate given in (2.52) isin general not in the membership set G(k). Therefore, some mod-
ification is necessary to ensure that the WL S estimate liesin or converges to the membership
set. Inthisrespect, the authors of [10] established the following result in the case of bounded-
but-unknown uncertainty.

ék = 91%1 +

(y(k +1) — 6F p(k)), VE, (2.53)

Theorem 2.2.7 (M odified Recursive L east squares) consider the systerfR.12) and sup-
pose that the uncertainty sequericsatisfies Assumption 2.1.10 withh = § > 0. Consider
the recursive WLS algorithr(2.53) and (2.54) with P, = PI and arbitrary 6,. For any
€ > 0, letq, be defined for alk > 1 by:

g = 0, y(k) — (Br_1)Té(k — 1) <3+,

ly(k) = (Be—)"o(k — 1)] — & ) .
Sk — )T Pak) YW~ (Or—1)"o(k —1)| > 5 +e.

qr =
(2.55)

Then the WLS estimatk converges to the membership set asymptotically in the following
sense: for any > 0, there exists a finite numbé¥, € N such thatvi > N,

e () {0 €R™:|y(m) — 0" p(m —1)| <3+ €} (2.56)
m=N,

Yet in some applications, asymptotic convergence of the estimate to the membership set might
not be satisfactory. In particular, in this thesis (Chapter 5) it will be crucial that the estimate
0, belongs to the membership set. Hence, we will use the orthogonal projection agorithm.
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Orthogonal projection algorithm

For a given set of data (y(¢),¢(i — 1)), s = 1,--- ,k, k > 1, the orthogonal projection
estimate 0, is computed as the orthogonal projection of the previous estimate on the present
membership set:
0, =arg min (0 — 0, 1)7(0 — 0_1). (2.57)
9eG(k—1)

Figure 2.3 illustrates this idea. This algorithm guarantees that the estimate is in the mem-

Figure 2.3: Orthogonal projection agorithm

bership set, at any time. If the estimate is updated according to (2.57), then we have the
following property [72].

Property 2.2.8 (Orthogonal projection algorithm) The model error sequence is non-increasing,
ie.,
16° = Orsal] < 116° = Oxll, V&, (2.58)

and is asymptotically slow, i.e.,

Property 2.2.8 holds regardless how the input is generated.



Chapter 3

Strong robustness and related
notions

In this chapter the notion of strong robustness introduced in Chapter 1 is mathematically de-
fined. Then, issues raised by the introduced concept are investigated within the mathematical
framework defined in the previous chapter and some of the results are illustrated by means
of simple examples in the first order case. In particular it is established that there exists a
strongly robust open neighborhood around any systends, inMoreover, it is proved that if

a set of systems satisfies a criterion involving the notion of structured stability radius, then
this set is strongly robust with respect to any control objective belonging to the previously
defined class of control objectives. Further, for specified subsets of syst&nswe show

that tractable tests for characterizations of strong robustness can be constructed using linear
matrix inequalities (LMI's) or a Kharitonov-like stability test. Finally, an extended notion of
strong robustness, called weak strong robustness, is investigated.

3.1 Déefinitions

3.1.1 Strongrobustness

We first recall the definitions of asymptotic stability and quadratic stability for linear discrete
systems.

Definition 3.1.1 (Asymptotic and quadratic stability) Consider the linear time-varying dis-
crete system described by
z(k+1) = M(k)x(k), z(0) (3.1

wherez € RY denotes the state vector add(k) € RV <Y denotes the dynamics matrix.
1. The syster(8.1) is asymptotically stable [93] if there exists> 0 such that iff|x(0)|| < e,
thenlimy, . ||z(k)|| = 0.
2. The syster8.1) is quadratically stable [111] if there exists a matrix = K7 ¢ RV*V
such thati’ > 0 and

[M(E)TKM (k) — K +1 <0, Vk. (3.2

25
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We define the notion of strong robustnesas follows.

Definition 3.1.2 (Strong robustness) Let 2 be a subset of the s@&,, defined in Definition
2.1.1. Suppose that the control objective is given and satisfies Assumption 2.1.13. For any
system¥ € C,, defined by

y(k+1) = 07 6(k), 6(0),

where
0= (an_1 - apbp_1 - bo)T € Cy, (3.3)

and where the regressor vectotis given by
(k) = (—y(k) -+ —ylk—n+1)uk) - uk-n+1))T € R*™, (34
f(6) denotes the controller defined in Assumption 2.1.13, leading to the control law
u(k) = f(0)z(k), (35)
where the state vectaris given by
z(k) = (y(k), - ,y(k —n+1),u(k — 1), -+ ,u(k —n+1))T. (3.6)

The set of systent3 is strongly robust with respect to the given control objective if the two
following conditions hold:
e QCCy
o for any systen® €  and for any sequence of systeftgk)}reny C €2, the time-
varying closed-loop system defined by:
y(k +1) = 67(k)
u(k) = f(0(k))z(k), B7)

where the vectorg (k) € R?" andz(k) € R?" are given in(3.4) and (3.6) respec-
tively, is asymptotically stable as defined in Definition 3.1.1.

Remark 3.1.3 Definition 3.1.2 could be extended to alarger class of systems. Indeed, asim-
ilar definition could be established considering systems that may be nonlinear, time-varying,
in continuous time description, stochastic and non-asymptotically stable. However, in this
thesis we restrict ourselves to sets of systemsin P,,.

Remark 3.1.4 The main difference between the classical concept of robustness and the
strong robustness notion lies in the idea that the former involves a fixed nomina model,
whereas the latter allows time-variability.
Property 3.1.5 The following statements hold:

e Any subset of astrongly robust set of systemsis strongly robust.

e For any system 6 € C,,, the point-set {6} is strongly robust.
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We now illustrate Definition 3.1.2 by means of two simple examples in the case of first order
systems.

Example 3.1.6 (Strong robustness and pole placement) We consider pole placement de-
sign in the case of first order systemsin P;. Let o denote the desired closed-loop pole, with
|a| < 1. Using the notation introduced in Chapter 2, P; consists of the discrete-time systems
(a,b)” € R? described by

y(k +1) + ay(k) = bu(k). (3.8)
If (a,b)T € Cy,i.e.,if b # 0, thefeedback controller achieving pole placement in o associated
with (3.8) leads to the control law

u(k) = T2y (k) (39)

Hence, aset 2 C C; is strongly robust with respect to pole placement in « if and only if
for any system (a,b)” € Q and for any sequence of systems {(a(k),b(k))T }ren C €, the
closed-loop system described by

y(k+1) = (—a+b~

)y (k) (3.10)

is asymptotically stable. Thus 2 C C; is strongly robust with respect to pole placement in
a if and only if for any system (a,b)” € Q and for any sequence {(a(k), b(k))” }ren C Q,
the absolute value of the time-varying closed-loop pole of the system (3.10) is smaller than
1 and stays bounded away from 1. Formally, @ C P; is strongly robust with respect to pole
placement in « if and only if for any system (a, b)” € Q, b # 0 and

Je €]0,1[: | —a+ ba(lzzl:)_ a| <1—¢Y(a,b)" € Q,V{(alk),b(k) }ren € Q. (3.12)

Example 3.1.7 (Strong robustness and Linear Quadratic control) We consider Linear
Quadratic (LQ) control design in the case of first order systems in P;. Suppose that the
LQ control objective isto minimize the quadratic cost criterion

J= Zy 2 4 ru(k (3.12)
=0

where the weight » > 0 isgiven. If (a,b)T € C;, the feedback control input u minimizing .J
given in (3.12) associated with (3.8) is given by [6]:

_ bp(a,b)

u(k) = f(a,b)y(k) = —LLZy (), (3.13)
where p(a, b) isequal to the unique positive root p of the Algebraic Riccati Equation

1
—b?p? —2ap+1=0. (3.14)
T
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Hence the input sequence that minimizes the criterion givenin (3.12) is

1
u(k) = [% - —b\/ a?r? 4+ b2rly(k). (3.15)
T
It follows from the discussion in Example 3.1.6 that 2 C P, is strongly robust with respect
to LQ control with quadratic cost (3.12) if and only if for any system (a, b)” € Q, b # 0 and
there exists e €0, 1] such that

a(k) 1 2 2 2 T T
|—a+ b[% ~ a?(k)r? + b2(k)rj<1—e,V(a,b)" €Q,V{(a(k),b(k)) }k@\(;gcl(;).
|

In Definition 3.1.2, the notion of asymptotic stability plays a crucial role but could theoreti-
cally be replaced by other stability notions. For instance, involving quadratic stability [111],
the notion of strongly quadratically robust sets of systeimdefined as follows.

Definition 3.1.8 (Strong quadr atic robustness) Let{) C P, and suppose that the control
objective is given and satisfies Assumption 2.1.23s strongly quadratically robust with
respect to the given control objective(if C P,, and for any systerl € () there exists a
guadratic Lyapunov function for the time-varying system define@ @y, for any sequence
of systemg6(k)}ren C Q. More precisely is strongly quadratically robust with respect
to the given control objective if the two following statements hold:

o O C P

o for any systend c Q there exists a matri¥y = K7 > 0 in R(2»~1)x(2n=1) gych
that for any sequence of systeft&k)}ren C €2, the following matrix inequality is
satisfied:

[A(0) + B()f(0(k)]" K[A0) + B(O)f(0(k))] — K + 1 <0. (3.17)
whereA(6), B(6) and f () are given by

__an71 “ e “ e _al _aO bn72 “ e “ e bl bO_
1 0o --- 0 0 0 el .- 00
0
0
1
A() = 0 0 o0 o o oo | 6w
0 1
0
: 0
L0 O 0 0 1 0|
B@)=[by1 0 - 01 0 - o 0]" (3.19)
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with
0= (an—1,"+" ,a0,bp—1,--- ,bg)" € R*" (3.20)

and f(9) is the controller defined in Assumption 2.1.13.

Example 3.1.9 (Strong quadr atic robustness and pole placement) We now revisit Exam-
ple 3.1.6 to illustrate the notion of quadratic strong robustness in the case of first order pole
placement design. It follows from Definition 3.1.8 that a set 2 C C; is strongly quadrati-
cally robust with respect to pole placement in « if and only if for any system (a,b)” € Q
and for any sequence of systems {(a(k),b(k))T }ren C Q, there exists a quadratic Lya-
punov function for the time-varying closed-loop system described by (3.10). Thus2 C C; is
strongly quadratically robust with respect to pole placement in « if and only if for any system
(a,b)" € Q and for any sequence {(a(k), b(k))” }ren C Q, thereexists K € R, K > 0 such
that

k k
|—a+b%|.[(.|—a+b%|—l€+l < 0,Y(a,b)" € 2, ¥{(a(k), b(k))  }ren C 2
equivalently if and only if thereexists K € R, K > 0 such that
k 1
| —a+ bWF <1- ?,V(a,b)T e O, V{(a(k),b(k))T }ren C Q. (3.21)

(3.21) isequivalent to (3.11), meaning that in the first order case, a set of systemsis strongly
quadratically robust with respect to pole placement in a stable pole « if and only if it is
strongly robust with respect to pole placement in «. We easily check that this result also
applies irrespective of the adopted control law. u

It is shown in [111] that if the system (3.7) is quadratically stable then it is asymptotically
stable for any sequence {6(k)}ren C Q. Thusif aset is strongly quadratically robust then
it is also strongly robust. We see further in this chapter (see Section 3.3.3) that under some
additional assumptions on the considered sets of systems, strongly quadratically robust sets
of systems might be easier to characterize than strongly robust sets.

Now, it is clear that in order to be strongly robust, a set of systemsin C,, is necessarily such
that for any system in this set, the controller based on it stabilizes any other system, i.e., the
property of strong robustness without time-variations of the involved controller is necessarily
satisfied. This leads to a simplified notion of strong robustness, the time-invariant strong
robustness

Definition 3.1.10 (Time-invariant strong robustness) Let Q C P,, and suppose that the
control objective is given and satisfies Assumption 2.1i8.time-invariant strongly robust
with respect to the given control objectivélfc C,, and for any systenmt 6’ € 2, the system
defined by

u(k) = £(0")x(k), (3.22)

where the vectorg(k) € R?" andx(k) € R*" are given in(3.4) and (3.6) respectively, is
asymptotically stable.
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Example 3.1.11 (Time-invariant strong robustness and pole placement) We consider first
order pole placement design. Similar to Example 3.1.6, let « denote the desired closed-loop
pole, with |a| < 1. It follows from (3.11) that @ C P; istime-invariant strongly robust with
respect to pole placement in « if and only if © C C; and

a + «a
b/
Equation (3.23) has a simple interpretation in the Euclidean plane as illustrated in Figure
3.1. A set of systems is time-invariant strongly robust if it is completely contained within
the interior of a parallelogram bounded by parallel lines going through the points (1,0) and
(c,0), as well as paralld lines through the points (—1,0) and («,0). The uncontrollable
system («, 0) isthus at the corner of these maximally strongly robust sets of systems. u

| —a+b | < 1,¥(a,b)", (a',0)" € Q. (3.23)

a

Figure 3.1: Time-invariant strong robustness with respect to pole-placement in a.

Remark 3.1.12 Using the geometrical construction in Example 3.1.11, we easily check that
the unique unbounded set containing a given system (a°, b°) which is strongly robust with
respect to pole placement in agiven stable pole « istheline going through the points (ao, bo)
and (—«,0). Thislineisthe set of systems @ yielding a controller f(6) which is exactly the
controller f(6°).

Example 3.1.13 (Time-invariant strong robustnessand L Q control) Letusinvestigatethe
case of time-invariant strong robustness for first order LQ control placement design. Similar

to Example 3.1.7, we focus on LQ control with a quadratic cost given in (3.12). It follows
from (3.16) that 2 C P; is time-invariant strongly robust with respect to the LQ control

defined by (3.12) if and only if Q C C; and

al

1
| —a+ b[ﬁ — oV a?r? +b2r]| < 1,¥(a,b)", (', 1) € Q. (3.24)

T
Equation (3.24) can be geometrically interpretation in the Euclidean plane (a,b)” asillus-
trated in Figure 3.2 and Figure 3.3. Let usfirst supposethat » = 1. Let (ag, by) be a system
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inR2. Let ° denote the set of systemsin R? defined by:

0 _ T.| a 1 /o
¥ = {(a,b)" :| a+b[b0 boy/a0+b0}|<1}. (3.25)

It can be easily shown that ©° represents the region between the two parallel lines with
direction v = (y/a2 + b3 — ao, —bo) and going through the points (1,0) and (—1,0) re-
spectively. This region is represented in Figure 3.2. Hence, given aset Q C R?, Q is
time invariant strongly robust with respect to LQ control defined in (3.12) with » = 1 if
and only if it completely belongs to the parallelogram bounded by the parallel lines going
through the points (1, 0) and (—1, 0) with direction given by &, = (\/a? + b? — a1, —b;) as
well as the parallel lines going through the points (1,0) and (—1,0) with direction given by
Uy = (y/a3 + b3 — az, —bs) where (a1, by) and (as, b2) are the points where the minimum-
volume cone with vertex (0, 0) containing 2 intersects 2. This construction isillustrated in
Figure 3.3.

Then, if » # 1, denote by €2,. the set of systems obtained by multiplying the coordinate b of
the systemsin w by % defined by:

Q, = {(a, %)T €R?: (a,b)" € Q}. (3.26)
Then the following result follows from our previous discussion. A set Q C R? istimeinvari-
ant strongly robust with respect to LQ control defined in (3.12) withr > 0if and only if the set
Q.. defined in (3.26) compl etely belongsto the parallel ogram bounded by the parallel lines go-
ing through the points (1,0) and (—1,0) with direction given by
01 = (Va? +b3 — a1, —b;) as well as the parallel lines going through the points (1,0)
and (—1,0) with direction given by v, = (/a2 + b3 — az, —by) where (a1, b1) and (ag, b2)
are the points where the minimum-volume cone with vertex (0, 0) containing 2, intersects
Q,. [ |

Time-invariant strong robustness is a weaker notion than strong robustness, meaning that
the former does not imply the latter. Indeed, aready in the first order case (n = 1), time-
variations of the controller do play arole in the stability of the closed-loop system. To prove
this result, let us consider pole placement in a, |a] < 1. Consider aset @ C C; such that
there exists asystem 0° €  and a sequence of systems {0(k) } ren C © such that

Jim b(k) = b and Jim a(k) =1+ a® —a (3.27)
and such that )
|—a0+bo%g)()| <1,Vk€N. (3.28)
(3.28) implies that
Jim |~ a® + bo%z)(kh _ 1, (3.29)

thus (3.23) is satisfied, hence Q is time-invariant strongly robust with respect to pole place-
ment in . However, (3.27) implies that (3.11) is not satisfied, hence €2 is not strongly robust
with respect to pole placement in «.. Nevertheless we have the following property.
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Figure 3.2: Time-invariant strongly robust set with respect to LQ control, r=1

P = (al,b1)
P5 = (as,bs)

Figure 3.3: Time-invariant strongly robust set with respect to LQ control, r=1
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Property 3.1.14 Let{) C C; be a compact set. Suppose that the control objective is given
and satisfies Assumption 2.1.13. THeis strongly robust (equivalently strongly quadrati-
cally robust) with respect to this control objective if and only if it is time-invariant strongly
robust with respect to this control objective.

Proof: Let Q C C; beacompact set. Suppose that the control objectiveis given and satisfies
Assumption 2.1.13. Suppose that €2 istime-invariant strongly robust but not strongly robust.
Then, we have

| —a+bf(d,b)| < 1,¥(a,0)T, V(0T €Q, (3.30)

and there exists a system (ag,bp)? € Q and there exists a sequence of systems
{(a(k),b(k))" }rew C Q such that

Jim | —a® +0°f (a(k), b(k))| = 1. (3.31)
Now, due to the continuity of f (Assumption 2.1.13), the function defined by
g:(a, D)7 € Q—|—a® +b"f(a,b)] €[0,1] (3.32)
is continuous. Now, it follows from the compactness of 2 that
Jim | —a” + 5 fa(k), b(k))] € {| —a+bf(a’, V)] : (a,b)" € Q, (o', )T € O} (339)
thus (3.31) implies
Le{l—a+bf(d,)|:(a,b)’ €Q,(d,0)" €q}. (3.34)

However, (3.34) contradicts (3.30). Hence the assumption that Q2 is not strongly robust is
falsified. Therefore €2 is strongly robust. In Example 3.1.9, we have shown that strong ro-
bustness and strong quadratical robustness are equivalent in the first order case. u

In general, in the higher order case, the three notions defined in Definition 3.1.2, Definition
3.1.10 and Definition 3.1.8 are not equivalent. Strong quadratic robustness implies strong
robustness, which in turn implies time-invariant strong robustness.

Remark 3.1.15 Whether or not a given set is strongly robust depends on the control objec-
tive. Thisindicates a link between performance and uncertainty. If an uncertainty set is not
strongly robust with respect to a particular control objective, it may be strongly robust with
respect to another control objective. Information about the uncertainty set may be used to find
the most suitable control objective. Thisisan important property in control design, normally
lacking from classical adaptive control discussions.

Remark 3.1.15 suggests to revisit once again the notion of strong robustness and introduce
the notion of weak strong robustness as follows.

Definition 3.1.16 (Weak strong robustness) LetQ2 C P, and letF be a class of control
objectives that satisfy Assumption 2.1.X3is weakly strongly robust (respectively weakly
strongly quadratically robust, weakly time-invariant strongly robust) with respegtifahere
exists a control objective i with respect to whick is strongly robust (respectively strongly
guadratically robust, time-invariant strongly robust).
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Example 3.1.17 (Weak strong robustness and pole placement) We revisit Example 3.1.6
so astoillustrate the notion of weak strong robustness. It follows from Definition 3.1.16 that
aset Q C Py isweakly strongly robust with respect to pole placement in a stable poleif and
only if there exists a stable pole such that 2 is strongly robust with respect to pole placement
inthispole, i.e., V(a,b)T € Q,b # 0 and

Jo €]-1,1], 3e €0, 1] |“+b%

| < 1—¢,Y(a,b)" € Q,¥{(a(k),b(k)) }ren C Q.

(3.35
A geometrical interpretation of (3.35) is presented in Figure 3.4. We construct 7, astheline
tangent to Q2 going through (1,0) on the right-hand side of 2. We denote by 7 the line
parallel to 7, and tangent to 2 on the left-hand side of 2. We denote by @ the intersection
between 7 and the a-axis. Similarly, we construct 7_ asthe line tangent to 2 going through
(—1,0) on the left-hand side of 2. We denote by 7~ the line parallel to 7_ and tangent to
Q on the right-hand side of 2. We denote by « the intersection between 7’ and the a-axis.
It can easily be checked that the set 2 is weakly strongly robust (according to (3.35)) if and
only if -1 < a < @ < 1. More precisdly, if —1 < a <@ < 1, Q is strongly robust with
respect to pole placement in any stablepole o € [a,a]. If a > @or if [a,@]N] — 1,1[= 0,
then Q is not weakly strongly robust with respect to any pole placement in astable pole. g

Figure 3.4: Weak strong robustness with respect to pole-placement.

In the remaining of this chapter, we adopt the following convention.

Convention 3.1.18 When the control objective is not specified, it is assumed to be fixed, a
priori given, and it satisfies Assumption 2.1.13. The associated control law introduced in
Assumption 2.1.13 will be denoted by f. Moreover, for any set Q C C,,, wedenote by f(€2)
the set of controllers associated with systemsin €2, defined by

F(Q) ={f(0): 0 €Q}. (3.36)
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3.1.2 Strongrobustnessradius

It follows from Assumption 2.1.13 that for any given system #° € C,,, the closed loop system
(69, £(6°)) defined by
y(k+1) = (0°)" o (k) (3:37)
u(k) = f(6°)x(k)

is asymptotically stable. Otherwise stated, the set {6°} is strongly robust. Now if 8 €
Pn \ Cn, Definition 3.1.2 implies that for any control objective satisfying Assumption 2.1.13,
there does not exist any strongly robust set containing 6°. To go further, we now examine the
following issue: for agiven system #° < C,,, what isthe magnitude of the largest perturbation
on 69 such that the set described by the perturbed system is strongly robust? Thisleadsto the
notion of strong robustness radius

Strong robustness radius
The strong robustness radius around a given system in P,, is defined as follows.

Definition 3.1.19 (Strong robustnessradius) Let#° € P,,. We call strong robustness ra-
dius aroundd® the radiusp®(6°) of the largest strongly robust ball of systems with center
6°:

PR (6°) = max {Ag € R?": {0 =6 + A6 : A € R?™,||AG|| < Ay} is strongly robus}.

(3.38)
By convention, i#° € P, \ C,, we use the notatiornp>?(6°) = 0.

Of course, a notion similar to strong robustness radius can be extended to lead to the notion
of strong quadratic robustness radius around ¢°, denoted by p*?5%(6°). Naturally, we have:

0 < pR(%) < pSR(°),v0° € C,. (3.39)
We now introduce the following notation.

Notation 3.1.20 For a given systerfl® € P,,, we denote b0 the largest set of systems in
C,, containingd® such that for any sequence of systeffig:) } ke C Zgo, the time varying
system defined by

y(k +1) = (0°)" o(k)
u(k) = f(0(k))x(k), (3.40)

where the vectorg(k) € R?" andx(k) € R?*" are given in(3.4) and (3.6) respectively, is
asymptotically stable. Moreover we denoterpythe radius of the largest sphere with center
6° that is contained irfg. By convention, i#° € P, \ C,, thenZgo = () andrgo = 0.

For any §° € C,,, the set 7,0 defined in Notation 3.1.20 existssince {#°} C Zyo. Any strongly
robust set of systemsin C,, containing 6° is a subset of 7,0. Hence we have:

rgo = pSR(00)7 VGO € an (341)
where pSR(0°) is defined in (3.38). We have the following resuit.
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Theorem 3.1.21

A setQ) C P, is strongly robust< Q C ﬂ Ty. (3.42)
0en

Proof: it directly follows from Definition 3.1.2 u

Theorem 3.1.21 leads to the following corollary.

Corollary 3.1.22 Let{2 be a non-empty ball of systems/m and letr(€2) denote its radius.
We have the following results.

i Ifr(Q2) < %mingeg rg thenQ is strongly robust, where, is defined in Notation
3.1.20.

ii. If Qis strongly robust, then(Q2) < 3 mingep(q) do, Whered () is the boundary of
anddy = maxg e, ||0/ — 0], V0 € C,,, whereTy is defined in Notation 3.1.20.

Proof:
i. Suppose () to be a non-empty ball of systems in P,, and suppose that its radius r(2)
satisfies )
< —mi . .
r(Q) < 5 minry (3.43)

Now, for any 6,0" € Q, wehave: ||0 — ¢'|| < 2r(£2). Hence, for any 6,6’ € 2, we have:

— 0 i n < . .
|16 9||<g,r}ggzre <rg (3.44)

Thusforany 0,0’ € Q, ¢’ belongsto the largest ball of systems with center 6 and with radius
r9, hence Q C 7y, VO € Q. Equivalently, we have: Q0 C (,cq, 7. It follows from Theorem
3.1.21 that Q2 is strongly robust. Hencei..

ii. Suppose 2 to be a strongly robust ball of systemsin P,,. Then, it follows from Theorem
3.1.21 that for any 6, 6; € 2, we have that 9; € T40. Hence we have:

V0,0; € Q, |16 — 6;|| < dp = max [|0' — 0]|. (3.45)
0'€T,
Therefore, B
V0,6, € Q, max]||6 — ;|| < dp. (3.46)
0,eQ

Equivalently, we have B

v0,0; € Q, max |[|0—6;]| < dp. (3.47)
0,€8(Q)

Since maxy, () ||0 — 0i]| = 2r(£2), (3.47) is equivalent to:
1—
Vo € 0(Q), r(2) < §d9. (3.48)

and therefore we have r(2) < § mingeg(q) do, which concludes the proof of ii. -

1
2
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Time-invariant strong robustnessradius

The notion of strong robustness radius around a given system in P,, can be restricted to the
time-invariant case. In this respect, the time-invariant strong robustness radius [25] around a
given systemin C,, is defined as follows.

Definition 3.1.23 (Time-invariant strong robustnessradius) Let8° ¢ P,. We call time-
invariant strong robustness radius arourtd the radius p™%(°) of the largest time-
invariant strongly robust ball of systems with cerdér

pTR (%) = max {Ag: {0 = 0° + A:A € R ||A|| < Ag} is time-invariant strongly robust
0=

By convention, it#° € P,, \ C,,, we will note: p™5R(9%) = 0.

Naturally, we have:
PSR(0%) < pTISR(0°), V60 € P, (3.49)

where pS®(0°) is defined in (3.38) We now introduce the set of stabilizing controllers.

Definition 3.1.24 (Set of stabilizing controllersfor systemsin C,) Suppose that the
control objective is fixed and satisfies Assumption 2.1.13. Given a syster@,,, we de-
note bySy the set of controllers that stabilizedefined by

So ={p € f(Cpn) : A(8) + B(0)y is Schur stablg, (3.50)

where A(9) and B(#) are given in(3.18) and (3.19) respectively. By convention, if
6 € P, \ Cpn, thenSy = (.

We now introduce the following notation.

Notation 3.1.25 V0 € C,, let r;(le) denote the radius of the largest open ballfiC,,) cen-
tered aboutf (¢) contained inSy:

rHe) = supfe > 0: Vo € f(Cn), [lp — f(O)llx < e = ¢ € Sy} (351)
We have the following theorem.
Theorem 3.1.26

A setQ) C P, is time-invariant strongly robust= Q C C,, and f(Q2) C ﬂ Sy. (352
0eQ

Proof: from Definition 3.1.10, 2 C P, istime-invariant strongly robust if and only if Q C C,,
and V0,6 € Q, f(9) stabilizes ¢’. Thisis equivalent to say that V6,6’ € Q, f(8') C Ss,
equivalently Vo € Q, () C Sp. -

Theorem 3.1.26 leads to the following corollary.

Corollary 3.1.27 Let{2 be a set of systems &,. And letr(f(€2)) denote the radius of the
largest sphere of controllers ifi(C,,) contained inf(£2). We have the following results.
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i. If 7(f(Q2)) < §mingeq 7}y thenQ is time-invariant strongly robust, whergl" is
defined in Notation 3.1.25.

ii. If Q is time-invariant strongly robust, then(f(Q2)) < %minfea(f(m)ﬁgl, where

d(f()) is the boundary of2 andEeTI = maxyes, ||¢ — f(0)|], V8 € C,,, whereSy
is defined in Definition 3.1.24.

Proof: the proof is similar to the proof of Corollary 3.1.22. -

3.2 Strong robustness measures

Although Theorem 3.1.21 and Theorem 3.1.26 (respectively Corollary 3.1.22 and Corollary
3.1.27) give some theoretical tests to check whether a given set of systemsin C,, is strongly
robust (respectively time invariant strongly robust) or not, the involved quantities ry, dg (re-
spectively 77, E;H) and their min/max val ues are not easy to compute.

Over the last decade the analysis of the classical robustness notion and the issue of robust-
ness measures for linear systems under complex and real perturbation received a good deal
of attention [37], [51], [52]. In this context, the concept of structured stability radius [52] has
been defined in the case of real or complex perturbations and an algorithm is given in [50] for
the computation of this radius in the complex case. In this section, our aim isto exploit some
of these results so as to express strong robustness measures using the well-studied notion of
structured stability radius.

3.2.1 Structured stability radii and related notions
Real structured stability radius

Thereal stability radius of a Schur matrix under structured perturbation is defined as follows
[51].

Definition 3.2.1 (Real structured stability radius) LetM € RV <Y denote a strictly Schur
stable matrix. The real stability radius af/ with respect to the perturbation structure
(D,E) € RV*1 x RN is defined by [51]:

rr(M, D, E)=inf{||A||g : D € R M+ DAE is not Schur stablg (3.53)
where||.||z denotes the matrix norm R >

We have the following result.

Result 3.2.2 VO € Cy, 17y = rr(A(0) + B(0)f(9), B(9), I2n—1) Wherely,_, is the unit
matrix inR (7= xCn=1) andyg (A(0) + B(0) f(0), B(#), Is,,_1) is given in Definition 3.2.1
andr/y, in notation 3.1.25.
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Proof: 7, can be expressed as follows

rioy= sup {lle—f(0)|lr : A()+B(0)¢ isstrictly Schur stable}, or:
LPEf(Cn)

iy = inf {lle— f(0)|lr : A(6) + B(6) isnot Schur steble }.i.e.,
Saef(cn)

1) = nf{llg — f(O)l|= : o € R*"™1, A(0) + B(0) f(0) + B(8)(p — £(9))
isnot Schur stable}.

Therefore, 77, = re(A(0) + B(0) f(0), B(0), I2n—1). -

Complex structured stability radius

The complex stability radius of a Schur matrix under structured perturbation is defined as
follows [51].

Definition 3.2.3 (Complex structured stability radius) Let M e R(Z7~1)x(2n—1) denote
a strictly Schur stable matrix. The complex stability radius\bfwith respect to the pertur-
bation structurg( D, F) € R(2»~Dx1 x R1*(2=1) s defined by [51]:

re(M, D, E) = inf{||A||c : D € C*®"=1 A 4+ DAE is not Schur stablg ~ (3.54)
where||.||c denotes the matrix norm i@ (2»=1),

Remark 3.2.4 It is shown in [51] that the complex stability radius defined in Definition
3.2.3 does not change if the perturbation classis extended from static linear to the wider class
of time-varying perturbations, whereas the real stability radius defined in Definition 3.2.1
depends on the specific perturbations class considered.

Property 3.25 Forall 0° € C,,, rc(A(0°) + B(0°) f(6°), B(6°), I2,,—1) > 0

Proof: the proof of Property directly followsfrom Definition 3.2.3. Indeed consider a system
6% € C,,. Thusfrom Assumption 2.1.13, we have that

A0%) + B(0°) £(0°) isstrictly Schur stable. (3.55)

Now suppose that rc(A(6°) + B(0°) £(6°), B(6°), I2,—1) = 0. Using Definition 3.2.3, this
impliesthat A(6°) + B(6°)f(0°) + B(6°)02,_1 isnot Schur stable, denoting by 02,1 the
zero matrix in R(»—1*1_ This result contradicts (3.55). This concludes the proof of Prop-
erty 3.2.5. -

3.2.2 Structured stability radii and strong robustness

We now exploit the resultsin Section 3.2.1 to establish strong robustness measures. We first
show how real structured stability radius and time-invariant strong robustness are connected.
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Real structured stability radius and time-invariant strong robustness

From Theorem 3.1.26 we obtain the following resullt.
Corollary 3.2.6 Forany set) C C,, if V0,0 € Q,
1£0) = £(0)llr < r=2(A(0) + b(0) £(0), B(0), Ion—1). (3.56)
then(2 is time-invariant strongly robust.
Proof: for agiven set Q) € C,,, suppose that (3.56) holds. Therefore, V0,6’ € (2,
1£(8") = F(O)llr < rr(A(6) + B(6)£(8), B(6), Ion—1) < 7o)

hence V0,6 € Q, f(Q?) € Sp. Theorem 3.1.26 implies that S is time-invariant strongly
robust. -

Complex structured stability radius and strong robustness

We now show how the notions of complex structured stability radius and strong robustness
are connected. We first introduce the following definition.

Definition 3.2.7 For any system € C,,, we denote by3(6) the ball of matrices ifR*(2n—1)
centered in  f(0) with radius the complex stability radius
rc(A(0)+B(0)f(0), B(6), Iz, 1), wherel,, ; is the unit matrix inR(?»~1)x(2n=1) More
precisely, denoting by (C,,) the set of controllers associated with system$,jnwe have:

B(6) = {¢ € f(Cn) : [£(0)) — ¢llr < rc(A(0) + B(6)f(0), B(0), I2n-1)}  (3.57)
We have the following result:

Theorem 3.2.8 For a given sef) C C,, if f(2) C Ny B(0), thenS is strongly robust,
whereB(6) is defined in(3.57).

Proof: suppose 2 C C, to be such that f(Q2) C Ny, B(0). Then Vo € Q, and for all
sequence {0(k) }ren C 2, we have

£ (O(K)) = f(O)|le < rc(A(0) + B(0)f(A(0), B(0)), B(0), Ian-1)- (3.58)

Therefore, using Remark 3.2.4, V6 € , and for all sequence {6(k)}ren C Q, the closed-
loop time-varying system with system matrix

A(0) + B(0)f(0) + B(O)(f(6(K)) — f(0)) = A(0) + B(0) f(0(k)) (3.59)

is asymptotically stable, meaning that the time varying system defined by (3.7) is asymptoti-
cally stable, for all & € C,,. Henceit follows from Definition 3.1.2 that €2 isstrongly robust. g

Then, Theorem 3.2.8 yields the following result.
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Theorem 3.2.9 For any set) c C,, if V0, 6" € Q,
1£(0) = f(O)[r < rc(A(0) + B(0)f(0), B(6), I2n-1), (3.60)
thenS is strongly robust.

Proof: suppose that (3.60) holds for agiven set 2 C C,,. ThenVv6,60" € Q, f(6') € B(H).
Hence, from Theorem 3.2.8, Q) is strongly robust. u

Theorem 3.2.9 yields the following corollary.

Corollary 3.2.10 Let 2 denote a subset af,, and suppose that there exists a ballof
controllers in the set of controllers associated with systenss such that

FQ) CS, Qe Ve, f(O) e (3.61)

Denoting byr(X) the radius of%, if

F(%) < 3 minre(A(0) + BO)J(0), BO), L 1), (362)

then( is strongly robust.

Proof: the proof of Corollary is similar to the proof of i. in Theorem 3.1.21. Let 2 C C,
and suppose that there exists aball X in f(C,, such that (3.61) holds. Suppose that (3.62) is
satisfied. Then, for any controllers ¢, ¢’ in X, we have that

lle — ¢'llr < 2r(X) <minf € Src(A(0) + B(0)f(0), B(9), In_1). (3.63)
From (3.61), V0 € 2, we have that f(0) € 3. Hence (3.63) implies that
1£(0) = f(0)lr < rc(A(0) + B(0)f(6), B(9), I2n-1), 70, 6" € Q. (3.64)

Hence (3.60) is satisfied. Corollary 3.2.10 hence follows from Theorem 3.2.9. u

Remark 3.2.11 Theorem 3.2.9 has the great advantage that the problem of checking if a
given set of systemsin C,, isstrongly robust (which apriori involvestime-varying controllers)
is reduced to atest involving time-invariant controllers only. Therefore, the characterization
of strongly robust sets has been significantly simplified.

3.2.3 Existenceof non-trivial strongly robust sets of systems

Before going further in the characterization of strongly robust sets of systems, we now focus
on theissue of existence of non-trivial strongly robust sets, i.e., strongly robust sets of systems
that are not reduced to a single point. We have the following result:

Theorem 3.2.12 (Existence of strongly robust open sets of systemsin C,,) Around any sys-
temd® € C,, there exists an open strongly robust neighborhood of systef)s in
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Proof: let §° € C,,. Let usintroduce the function:

F:e€l0,00[—T(e)= m rc(A(0) + B(0)f(9),B(0), Ian—1), (3.65)

= in
0:]10—0°]|<e

whererc(A(0) + B(0) f(0), B(0), I2,—1) isdefined in Definition 3.2.3.

It follows from the continuity of the complex stability radius [51] that T" is continuous. Now,
Property 3.2.5 impliesthat 7c(A(6°) + B(6°) f(6°), B(6°), Is,—1) > 0. Moreover, we have
that for any system ¢ which belongs to P,, C,,, rc(A(0) + B(0)f(0), B(0), Isp—1) = 0.
Hence, we have

T'(0) = rc(A(6°) + B(8°)£(6°), B(8°), Is,—1) > 0and lim I'(x) =0, (3.66)

Tr—00

It follows from the continuity of I" and (3.66) that there exists xy > 0 such that:

L'(0) _ rc(A(0°) + B(6°)£(6°), B(6°), Ian—1)
4
L(0) _ rc(A(6°) + B(0°)f(6°), B(0°), I2n-1)

4

Now, let By denote the open ball of controllersin f(C,,) with radius x, and center f(6°). It
follows from (3.67) that the radius r(By) of By issuch that:

rc(A(0°) + B(6°)£(6°), B(6°), In-1)
4

IN

’I“(Bo) =9

9:\\913119101|1|<xo re(A(0) + B(0)f(0), B(0), Izn-1), (3.68)

Now, using continuity of the map f on C,,, we havethat: 3¢ > 0 such that if ||§ — ¢'||r < ¢,
for 0,0’ € C,, then||f(0) — f(¢")||r < r(Bo). Hence there exists an open ball Q° of systems
in C,, with center #° and radius min(e, zo) > 0 suchthat f(Q°) C B, and (3.68) impliesthat

r(Bp) < %Grrelig% rc(A(9) + B(0)f(0), B(6), Izp—1). (3.69)

Finally, according to Corollary 3.2.10, (3.69) implies that Q° is strongly robust. This con-
cludes the proof of Theorem 3.2.12. -

Remark 3.2.13 Intheproof of Theorem 3.2.12, the Assumption that themap f is continuous
plays acrucia role. This motivates the continuity assumption in Assumption 2.1.13.

3.3 Testing strong robustness

The purpose in this section is to establish some tests that allow to check whether a given set
in C,, enjoysthe stability notions previously introduced in the previous section.
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3.3.1 Testing controllability

A necessary condition that a set of systemsin P,, has to satisfy in order to be strongly robust
isto be contained in the set of controllable systems. In this subsection we are concerned with
the following problem: given a set of systems 2 C P, construct a sufficient test to check
whether 2 is a subset of C,, or not. As afirst approach to this problem, we now go back to
the basic properties of controllable linear systems.

Property 3.3.1 Asysten® € P, is controllable if and only if any of the following statements
holds:

i. A(9), B(6) given in(3.18) and(3.19) satisfy [93]:
rank([A(6) — AM2,—1B(0)]) = 2n — 1,V € C; (3.70)
ii. A(6), B(9) given in(3.18) and(3.19)satisfy
min o ([A(0) = Men—1 B(O)]) >0, (3.71)
whereo ([A(0) — Al2,—1 B(6)]) denotes the smallest singular value of the Hautus
matrix ([A(0) — A2,—1B(6)]) [38];

iii. rank(Sylv(A(0), B(#))) = 2n—1[93], whereSylv(A(f), B(#)) denotes the Sylvester
matrix given by:

ag a; --- 1 0 Ce 0
0 a PN Ap—1 1
0
0 e 0 ao aq e 1
SZI/Z’U(A(Q)7 B(Q)) = . c R(Qn—l)x@n—l).
: bo b1 br_1
bO bl bnfl O
L bO bl et bn—l 0 e O

(3.72)
From these considerations, we derive the following result.

Property 3.3.2 A set) C P, is a subset of,, if and only if any of the following statements
holds:

i. A(0), B(#) given in(3.18) and(3.19) satisfy
rank([A(6) — Al2,—1B(6)]) = 2n — 1,VA € C,V0 € ; (3.73)

ii". A(8), B(0) given in(3.18) and (3.19) satisfy
I;lé(rclg([A(@) — Aan—1 B(8)]) > 0,V60 € Q, (3.74)

whereo ([A(0) — M5,—1 B(6)]) denotes the smallest singular value of the Hautus
matrix ([A(0) — Alz,-1B(0)]) ;
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ii. The Sylvester matrixSylv(A(#), B(#)) given in(3.72) has full-row rankve € €.

Unfortunately, the characterization of controllability givenini’. isdifficult to implement in
finite precision [88]; indeed it is even not clear how to numerically verify whether a given
system 6 is controllable through (3.70). Hence checking whether a set is a subset of the set
of controllable systemsusing i’. isnot thinkable. Then, with respect toii’., it has been shown
[38] that

([A() ~ Mauy BOY) = gin (|15 Mgl
rank(Sylv(A(0) + A4, B(0) + Ap)) #2n—1}.  (3.75)

where (A4, Ap) € REr=1)x(@n=1) o R22=1 |n other words, (3.75) meansthat o ([A(6) —
Ma,—1 B(0)]) is nothing but the distance from the pair of matrices A(6), B(9) to the set
of uncontrollable pairs of matricesin R(27~1)x(2n-1) » R2n=1_Thjs|eadsto the following
result:

Theorem 3.3.3 Let{2 denote a set of systemsA and letd* be any element if. If (3.74)
holds forf = 6*, and if

[(A(0), B(9)) — (A(67), B(6"))|| < omin([A(07) — Al2p—1 B(07)]), V0 € 2, (3.76)
thenQ C C,,.

Hence, Theorem 3.3.3 may provide a method to check whether a set €2 is subset of C,, or not,
choosing 6* to be for instance the center of a ball of systems outer-bounding €2 . However,
the function to be minimized in (3.74) is not convex and may have as many as 2n — 1 or
more local minima. Moreover it is not clear just how many local minimathey are for agiven
system 6 [24]. Many algorithms have been proposed in the literature to compute local minima
of the function

A€ C i Unc(d) = o([A(0) — Aon_1 B(O)]), (3.77)

for agiven system 6 € P,, ([20], [24], [113]), but have no guarantee of finding Unc(6) with
any accuracy, since Unc(#) isthe global minimum. Furthermore, methods that search for the
global minimum ([24], [47], [36]) sometimes offer this guarantee but require a computation
time that isinversely proportional to (Unc(6))?, prohibitively large for nearly uncontrollable
systems. For this reason, numerically tractable methods for estimating Unc(6) for a given
system 6 can be found in [44]. On one hand, these algorithms require much smaller com-
putation times, but on the other hand, the author shows that if Unc(6) is very tiny, then its
estimates by the proposed algorithms in finite precision could be much larger than the exact
value. Further in Chapter 5, we will suppose that the true system to be controlled is unknown,
hence we have no information about its controllability level. Thisimpliesthat the case where
the system is close to uncontrollability will not apriori be neglected in our framework.
Therefore, for our purposes, none of these reported methods based oni’. and ii’. is com-
pletely satisfactory. Alternatively, let us now exploit iii’. to derive a sufficient test to check
whether a bounded set Q C P,, issubset of C,, or not. First, we have the following theorem
[53].
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Theorem 3.3.4 (Interval matrix and non-singularity) Let S= S+[—A, A] be aninterval
matrix inRY*¥N je.,

Slese SiJ—AiJ SS’iJ SSLJ'—FA@]‘,VZ.,]. <N, (378)

where, VM € RN*N, M; ; denotes the entry ¥/ in theth row and;jth column. For all
M € RN*N letg(M),5(M) denote the smallest and the largest singular valued/of

respectively. The&(A) < g(S) implies thatS is non-singular.

Hence, suppose that 2 C P, isabounded set of systems. Recall that any element 6 € P,, is
of the form:

0= (a/n—la"' ;a07bn—17"' abO)T' (379)

Since (2 is bounded, we can enclose 2 in a symmetric outer-bounding polytopic set  of
systemsin P,,, defined by known parameters {a}, Aa;, b, Ab;}izo.... n—1 INR xR xR x
R, such that

Q=1{0:0a —Aa; < a; <a’+ Aay, bl — Ab; < b; < b¥ + Ab;}. (3.80)

Now, for any element 6 in Q we can form the Sylvester S(6) matrix given in (3.72). We have
that

S(0) € S* + [-A,A], V0 € Q, (3.81)
where
S* = S(0%) = S(a’_y,-- a8, b5 4, ,b), (3.82)
and
[AA] = {S e RE=DXCn=1) . A, - <80 < Ay, (3.83)
where

Ai,j = Aay, if 5(9*)1] =ay,k=0,---,2n—1,
A= 0if S(0%);,; = 0.

Now, applying Theorem 3.3.4, we aobtain the following result.
Theorem 3.3.5 Let() be a subset oP,, andQ a known symmetric orthotopic set of systems
outer-bounding? defined by{a}, Aa;, b}, Ab; }i=o.... n—1 according to(3.80). Define the
interval Sylvester matri¥™* + [—A, A] where the midpoint matri$™ and theA-matrix are
given in(3.82) and (3.83) respectively. Then

7(A) < o(57) (384)
implies that) c C,,.

Proof The proof directly follows from (3.81), property iii’. and Theorem 3.3.4. m
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3.3.2 Atest for strongrobustnessinvolving complex structured stability
radius

In this subsection, we consider subsetsin C,, and construct atest to check whether this set is
strongly robust or not.

The sufficient test for strong robustness of a given set 2 in C,, given in Theorem 3.2.9 estab-
lishes alink between the maximal distance between controllersin f(€2) and the minimum of
the complex structured stability radii

rc(A(0) + B(9) f(0), B(9), Izn-1) (3.85)

defined in Definition 3.2.3 over the set €2. The complex structured stability radius of a Schur
matrix under structured perturbations of type (3.85) plays an important role in robustness
issues in feedback control analysis [51] and its computation attracted a consequent attention
[51], [52], [50], [73], [74]. In particular, we refer to [52] where the following Proposition is
proved.

Proposition 3.3.6 Let (M, D, E) € RVXN x RN*l x RN For anyp > 0, define the
matrix pencillV,, is given by

M — X —-\DDT

WP()‘) = p2ETE I—)\MT

 AeC (3.86)

whereo (W) denotes the spectrum of the matrix pefi€jl. Then we have

re(M,D,E) =min{p e Ry : o(W,)N{s € C: |s| = 1} # 0}. (3.87)
From Proposition 3.3.6 we derive the following result.
Theorem 3.3.7 LetQ) C C,,. For anyfd € Q and anyp > 0 define

A(0)+ B(0)f(0) — AI —AB(0)(B(9))T

W) = 21 I —X(A(0) + B(0)f(9))

s 1, ec. (389

If for all 9,6 € Q we have
1£(8) = f(0)]] <min{p € Ry : o(W)) N {s € C: |s| = 1} # 0}, (3.89)
Wherea(Wlﬂ’) denotes the spectrum of the matrix perW;f, then(2 is strongly robust.

Proof: Let Q C C,,. Suppose that (3.89) is satisfied V6, 6’ € €. Hence using (3.87) with
A= A)+ B(6)f(6), D= B(#) and E = I5,_1, we obtain that

[1£(0) = ()] < rc(A(0) + B(0)£(6), B(6), I2n-1), 70,0 € Q. (3.90)

Hence it follows from Theorem 3.2.9 that €2 is strongly robust. u

By definition, strong robustness of a set 2 C C,, requires that the time-varying controller
based on any time-varying sequence of systemsin 2 yields an asymptotically stable closed-
loop system when applied to any system to €2 (see Definition 3.1.2). An interesting achieve-
ment of Theorem 3.3.7 is that the time-variation aspect does not appear anymore. Indeed,
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the condition in Definition 3.1.2 on the set of all possible time-varying closed-loop systems
constructed over the set 2 described by

2(k +1) = [A(0) + B(0)F(0(k))]z(k), Y0 € Q,V{0(k)} C Q (3.91)

has been replaced in (3.89) by a condition on the set of all possible time-invariant closed-loop
systems constructed over €2 described by

2(k + 1) = [A(0) + B(0)£(6))|z(k)V0,0 € Q. (3.92)

3.3.3 Strongquadraticrobustnessand Linear Matrix I nequalitiesin the
case of pole placement

Let us now characterize strongly quadratically robust setsin C,, by means of Linear Matrix
Inequalities (LMI’s). We previously saw that strong quadratic robustness is characterized
as follows (Definition 3.1.8). A set Q C C,, is strongly quadratically robust if there exists
amatrix K = KT > 0 in Re»=1Dx@n—1) gych that for any system 6 € Q and for any
sequence of systems {0(k) }ren C 2, the following matrix inequality is satisfied:

[A(0) + B(0)f(0(k)|"K[A®) + B(0)f(0(k))] — K + I < 0. (3.93)

However, (3.93) places an infinite number of constraints on 2. It is our purpose in this
section to make additional assumptions on the way systemsin C,, are described and also on
the control objective, so as to convert the strong robustness test given in Theorem 3.3.7 into
aproblem that is numerically tractable. To this effect, we first recall the notion of controller
canonical form of a controllable system. make the following assumption.

Definition 3.3.8 (Controller canonical form) Consider a system € C,. Its controller
canonical form is defined as follows [93]:

z(k+1) = A°(0)x(k) + B(0)u(k) (3.99)
y(k) = C°(0)x(k),

whereA¢(0) € R™*", B¢(d) € R™ andC*() € R'*™ are given by:

0 1 0 0 0
: o ; 0

A= S B(6) = | : (3.95)
0 0 1 0
Cay —ay o e —ay 1
CO)=[bo b1 -+ bpoy ], (3.96)

where the coefficients;, b; are the coefficients parameterizing the systents,igiven by
0= (an—1>a0>"' abn—l7"' abO)T' (397)

Now we introduce the following notation.
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Notation 3.3.9 (Set X, of systemsin canonical forminC,) LetX, C C, be the set of sys-
tems inC,, that assume a controller canonical for(8.94) where the state vector(k) is
measurable.

Notation 3.3.10 (Polyhedral set of systemsin canonical formin 3,,) LetS, C 3, be the
set of systems iR,, whose coefficients; andb; satisfy bounds according to

a; <a; <a;andb; <b; <b;, Vi <n-—1. (3.98)

for known values of the bounds, @;, b; andb;. Such a set is called a polyhedral set of
systems irt,,.

We now make the following assumption.

Assumption 3.3.11 (Pole placement) The control objective amounts in locating the closed-
loop poles in the roots of a given characteristic polynomigf) = " + ZL‘OI P& with
known real coefficientg;. It is such that for any € %,,, we have that the controller uniquely
defined according to Assumption 3.3.11 can be (uniquely) represented by the feedback law

ulk) = F(O)z(k) (399)
wheref : 3, — R is defined by
f0) = [ao —Po ... Qn-1 —an] . (3.100)

Remark 3.3.12 The use of control canonical formsimpliesthat f(6) given in (3.100) does
not depend on the coefficients b;. Note that the control objective in Assumption 3.3.11 satis-
fies Assumption 2.1.13 aswe shown in Chapter 2, Section 2.1.3. At first sight, the control law
3.99 does not exactly have the form of the control law given in Assumption 2.1.13. However,
choosing the i/s/o description of the system 6 given in 2.1.4, we can show that the controller
£(6) in (3.100) corresponds to a unique controller of the type 2.14, (2.13) satisfying Assump-
tion 2.1.13.

Now, given any pair of systems 6,6’ € ,,, we denote by (6, f(#’)) the closed loop system
defined by

z(k + 1) = A°(0) + B(0)u(k) (3.101)
u(k) = f(0")x(k)

where the closed loop state evolution matrix A°(0) + B°(0) f (') takes the form:

A%(0)+B4(0)(0') = R . (3102)
0 0 1

(0’6 - aO) —Po - e (a;L_l - an—l) — Pn—1



CHAPTER 3. STRONG ROBUSTNESS AND RELATED NOTIONS 49

Fori = 0,...,n — 1, let M, denote the n x n matrix which is zero except at its (n,)
entry where it is 1. Let M,, = A°(0°) + B¢(6°)f(0°) denote the nominal closed loop
desired matrix. Then, when 6 and 6’ range over S,, defined in Notation 3.3.10, the matrix
A°(0) + B¢(0) f(0"), givenin (3.102), is of polyhedral form:

M(6) := A°(0) + B¢(0) f(0") = M,, + nz_:léiMi, (3.103)
=0
where, fori = 0,...,n — 1, the parameter ¢; assumesits valuesin theinterval:
8, i=a; —a; < 0; <@; —a; =0 (3.104)
Let § = col(do,- - ,d,—1) bethe uncertainty vector, and define
Ao = {0 =col(6p, -+ ,0,_1) | 6; = £6;}, (3.105)
A= {6=col(6o, - ,0n-1) : ;| < 3;}. (3.106)

A isthefinite set consisting of all ‘corner points' of the uncertainty region (3.104) and A is
the convex hull of Ag. The set of al possible closed-loop state-evolution matrices is defined
by the affine set M (0) where § € A. We have the following result:

Theorem 3.3.13 (Strong quadr atic robustness: afinite set of LMI's) The polyhedral sub-
setS, C C, defined in Notation 3.3.10 is strongly quadratically robust if and only if there
existsK = KT > 0 such that

[M(OTKM(S) —K+1<0, Vel (3.107)
wherel is defined by3.106).

Proof: to prove the necessity part in Theorem 3.3.13, we go aong the following lines. Sup-
pose S,, is as specified. Define A according to (3.106). If there exists K = K7 > 0 such
that (3.107) holds for any & € Ay, then convexity of the function
he(8) == 2T ([M(8)]T KM (8) — K)x for any x € R™ impliesthat [111]

MO TKM(§) - K+1<0, Yé€A (3.108)
Now, define V : R® — R according to V(z) = 2T Kx. We then claim that V' defines
a Lyapunov function for any of the interconnected systems. Indeed, V'(-) is non-negative

and for any system 6,6’ € S, the interconnection (6, (")) takes the state-space form
z(k +1) = M(§)z(k) with M (5) defined by (3.103), where § € A. Hence we have that

V(z(k+1)) =27 (k)M)T KM (8)x(k)
< z(k)' Ka(k) = V(z(k))

for any 6 € A. Therefore, it follows from Definition 3.1.8 that S,, is strongly quadratically
robust. Conversdly, if no such positive definite matrix K exists, from Definition 3.1.1, there
isno quadratic stability of the parameterized closed-loop system and hence .S,, is not strongly
quadratically robust.This concludes the proof of Theorem 3.3.13. -

We would like to emphasize the following consequences of Theorem 3.3.13.
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1. Theorem 3.3.13 involves a finite numberof LMI’'s (at most 2 LMI’s). Therefore,
the strong quadratic robustness characterization, placing a priori an infinite number of
constraints on the set of systems to be tested, has been converted into a numerically
tractable test.

2. In an adaptive control framework, the parameters §; range over the diameter of the
uncertainty region |§;| < §;,fori =0,--- ,n — 1. Hence, it is an interesting problem
to guarantee that the intervals [§,, 6;] will be uniformly decreasing as function of the
iteration time of an adaptive algorithm. This amounts to reducing the uncertainty
diametersa; —a;, 71 =0,...,n — 1. Thisissue isdiscussed in Chapter 4.

3. For given uncertainty intervals §; := @; — a;, the feasibility test of Theorem 3.3.13
depends on the desired pole locations defined by the characteristic polynomial p. This
is in accordance with Remark 3.1.15 and shows that some pole locations might be
better suited to obtain strong robustness than others.

4. Because of the assumption that the state vector x(k) in (3.94) is measurable, the result
presented in Theorem 3.3.13 only holds for a restricted class of polyhedral sets of
systemsin C,,.

3.34 Time-invariant strong robustness and pole placement:
a Kharitonov-like test

In this section our purpose is to construct a test to check if a given set Q@ C C,, istime-
invariant strongly robust with respect to pole placement in some specified stable poles. It
follows from Definition 3.1.10 that aset 2 C C,, istime invariant strongly robust if for any
systems 6, 6’ € Q, the closed-loop characteristic polynomial det(¢1 — A(6) + B(0) f(#')) is
strictly Schur stable, where A(6), B(6) and f(¢’) aregiven in (3.18), (3.19) and Assumption
2.1.13 respectively. Hence checking time-invariant strong robustness of 2 comesto the same
than checking the Schur stability of the set of all polynomials det(£1 — A(6) + B(0)f(6'))
when 6,6’ describe €. Testing the Hurwitz or Schur stability of a family of polynomias
is arelevant question in many stability and robustness problems and led to a large body of
literature [22], [60], [57],[86], [85]. In particular, a significant interest has been focused on
the issue of Hurwitz stability of a polynomial interval which first appeared in [57], leading to
the celebrated Kharitonov's theorem which we will recall further. Counterparts of this result
for testing Schur stability of a polynomial interval can be found in [86], [85], [60], [22] but
till suffer from a much higher computational complexity.

Using these results, our objective is now to express a sufficient test for time-invariant strong
robustness of bounded orthotopic sets of systemsin C,, in the form of aaKharitonov-like test
[26].

We first recall the Kharitonov's Theorem to test the Hurwitz stability of interval polynomials
[57].

Theorem 3.3.14 (The Kharitonov's Theorem in the continuous-time description)
For all N € N, each member of the infinite family of polynomials

X&) = xo+x1€+ -+ xn&V (3.109)
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with
Xi <Xi <Xi, Vi=0,---,N, (3.110)

where(x;, Xi)i=o,..., v are given constants, is strictly Hurwitz if and only if each of the four
Kharitonov polynomials

7€) =xo0 + x1€ + X2&” + X36° + xa& + x56° + X6’ + - -
Y2(€) =X0 + X1€ + x26° + x3& + Xa&* + X5E° + x6&° + -+
73(€) =X0 + x1€ + x26” + X3E* + Xa&t 4+ x58° + x6& + -+
74(€) =x0 + X1 + X26° + x3E” + xa&* + X5E° + X6 + -+

is strictly Hurwitz.

We consider orthotopic sets of systems, also called boxes of systems. These sets are defined
asfollows.

Definition 3.3.15 (Boxes of systemsin C,,) We call box of systems @), any setZ,, C C,
associated to thén given constant$a;, a;, b;, b; }i—o,... n»—1 Such that for all systerh € 7,,,
the parameters,, b; given in(4.6) satisfy:

a; € [a;,a;] andb; € [b;,b;], Vi =0, ,n—1. (3.111)

We consider pole placement in some pre-specified stable poles {a; }ien, |ai] < 1, Vi. We
will use the following notation.

Notation 3.3.16 (Controllers) Any system i € C, is described by the input/output equa-
tion in discrete-time

n—1 n—1
yk+ 1)+ > ay(k+i—-n+1)= bu(k+i—n+1) (3.112)
=0 1=0

and is associated to the polynomials given #f¢) = ¢ + a,_ 1" ! + --- + ap and
B(&) = bp 1"+ -+ bo.

For any systend < C,,, its unique controllerf (6) is identified with its parameter vector
f(e) = (CO7 oy Cp—2, dOa e 7dn71)T S R2n_1~ (3113)

This controller is described by

n—2 n—2

ulk) + 3 ek +i—n+1) =Y dylk+i—n+1). (3.114)
=0 =0

With the controller (3.114) we associate the polynomidls) = "1 4-¢,, 2" 24 +¢q
andD(§) = dp,—26""2 + -+ - + do.

We now introduce the following notation.
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Notation 3.3.17 (Characteristic polynomial) For any system#,¢’ < C,, we denote by
Xo,f(0")(¢) the characteristic polynomial of the closed-loop system defined by

a(k+1) = A(0)x(k) + B(0)u(k) (3.115)
u(k) = f(0")z(k), (3.116)

whereA(0), B(0), f(¢') andz(k) are defined in(3.18), (3.19), (3.6) and Assumption 2.1.13
respectively. Hence, we have

Xo,£(0")(¢) = det(E1 — (A(0) + B(0)f(¢'))) (3.117)
= A(€)C(&) + B(E)D(€). (3.118)

where A(¢), B(¢), C(¢) and D(¢), are defined in Notation 3.3.16. Hendé,#° € C,, we
have

n—1 n—2
Xo.6000)(&) = (€7 + > _ a1+ e + Z bigh) Z do¢).  (3.119)
1=0 =0 =

2n—2
Denotingx,(e0y (€) = £ + Z i€’ (3.120)

we associate the polynomig ,go) (&) with its coeff|C|ent vector

Xe’d)(m)) = (1a X2n—2,""" 7XO)T € RQ"' (3121)

The construction of atest to check whether a box of systemsin C,, as defined in Definition
3.3.15 istime-invariant strongly robust or not is illustrated in Figure 3.5. It goes along the
following steps.

Algorithm 3.3.18 (Timeinvariant strong robustness: a sufficient Kharitonov-like test)

(1) Set of characteristic polynomials generated by a fixed controller: fix a system
0° € T,, and characterize the set of characteristic polynomials associated with the set
of closed-loop systems {(6, f(6°))}oez,

Lgo(Zn) = {x0,7(60) (), 0 € T,,} C R*[¢] (3.122)

(2) Relation between Schur stability and Hurwitz stability: transform the set I'yo (Z,)
into aset ['go(Z,,) C R?"[¢] defined by

Fao(Z,) = {70 i= (€ = D"X(-7)  x(O) € Tn(T.) (3.123)
In[13], itisproven that for any x (&) € Ty (Z,,), x (&) hasal its zeros within the open

unit complex disc if and only if the associated polynomial x (&) defined in (3.123) has
all its zeros in the open half complex plane.

(3) Closure box of Z,, associated with a fixed controller: because the transformed set
L'go(Z,,) isin general not a box, define an outer bounding box of systems ', (Z,,) of
Lo (Z,,), called closure box of 4o (Z,,).



CHAPTER 3. STRONG ROBUSTNESS AND RELATED NOTIONS 53

(4) Maximal closurebox: generatetheset | Jyocr Lo (Z,,) and compute an outer bound-
ing box ' (Z,,) for thisset. Thebox I'*(Z,,) is called the maximal closure box of Z,,.

(5) Kharitonov'stest: apply the Kharitonov's test given in Theorem 3.3.14 on the poly-
nomial interval f+(In). If the test is positive then any characteristic polynomial in
It (Z,) is strictly Hurwitz stable, therefore any characteristic polynomial in T'*(Z,)
is strictly Schur stable. Equivalently, the closed loop system (6, £(#°)) is asymptoti-
cally stable for any 0, 0° € Z,,, consequently Z,, istime invariant strongly robust.

7, C R2" f(Z,) c Rt

g
=)

=

N

Controllers

Tgo(Z,) € R2[¢]

Closed loop system

Figure 3.5; Strong robustness and boxes of systems, discrete time description.

These various steps are now discussed in more details. In the next discussions, Z,, denotes a
given box of systemsin C,, as defined in Definition 3.3.15.

Set of characteristic polynomials generated by a fixed controller

We suppose the system €° = (a® _;,---,a3,%_,,--- ,b3)T € Z,, to be fixed. The known
desired closed loop characteristic polynomial is denoted by
2n—1
€= 1] €~a), (3.124)

i=1

and is associated with its coefficient vector x°. The controller based on ¢° is f(6°) =
(A 5o e dn2,0--+,d$)T defined as the unique solution of

XeO,f(e)O)(f) = XO(E)- (3.125)
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according (3.119). The set I'yo(Z,,) of al characteristic polynomials generated by f(6°) is
the set of polynomials {xs, (90 (£) }oez, Where xg, r(o0)(§) is defined by (3.119).

Relation between Schur stability and Hurwitz stability

Our ultimate goal is to use the Kharitonov’'s Theorem for continuous systems to check the
stability of any characteristic polynomial xg. (g0)(€),0,6° € Z,. Sincewe deal with systems
in discrete-time description, we first transform the problem of testing the Schur stability of a
polynomial into the problem of testing the Hurwitz stability of arelated polynomial. We first
recall that any real polynomial p(¢) = po + - - - + pné™ hasal its zeros within the open unit
disc if and only if the polynomia p(§) = (£ — 1)Np(§%}) has all its zeros in the open-half
plane[13]. Therefore, the Schur stability of the polynomial described by (3.119) is equivalent
to the Hurwitz stability of

Xo,560)(6) =X ai(€ + 1)’ ) Z — 1))
1=0 j=0
n—1 n—1
+E-DQBE+DHE-D)TTHQ_dE+ D) €= )"
k= =
’ ’ (3.126)
where a,, = 1 and ¢ _, = 0. This polynomial can be re-written as:
2n—1 2n—1 n—1 —
Xo,7(00) (€ Z Xi€ = (Y a@e) (Y ey + (6 - 1)( Z brE®) Z d¢h), (3.127)
1=0 7=0 k=0 =0

where the coefficients a;, bi, G, d; are calculated accordi ng to [13] asfollows. For the coeffi-
cients a; we get:
[dn: e 7d0] = [aru Ap—1,""" 7a0]rn+1 (3128)

wherethe (n + 1) x (n + 1) matrix I'y, 11 = [7i 5]i,j=1,-- ,nt1 1SQiven by the formula
Vi = Yig+1 +Vi-1,41 + Vic1,5,0 =2, ,nandj=n,--- 1,
subjecttoy; , =1,i=1,--- ,n+1,
and where the element ~, ; isthe binomial coefficient in 7 in the expansion of (n — 1)™ for

j=1,--+,n+ 1. The same result applies to the computation of b;, ¢; and d;. Denoting the
polynomial Xg_ f(g0) (&) iINT*(Z,,) by

Xo,£(69)(§) = Z i€’ (3.129)

we associate with X, 40y (€) its coefficient vector

~ = ~ T 27
Xo,£(60) = (Ke,f(eo),2n72’.“ ’Xe,f(ef)),znq) e R™. (3.130)

To conclude, for some given 6,6° € Z, , the problem of checking the Schur stability of
the polynomial xg, ¢ (g0 (&) has been transformed into checking the Hurwitz stability of the
related polynomial Xy, ¢(go) (&) defined by (3.127).
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Closurebox of Z,, associated with a fixed system: definition

The closure box f;o (Z,,) of T, associated with ¢° is the outer bounding box of T'y0(Z,,)
defined by:

Fgo (In) = (l‘gnfg,l'zn,g, s ,.’)So)T S RQn_l L x; € [&(90),Z(90)]} (3131)
Where&(ﬁo) = OHGHII}l )297]0(90)71' and YL(QO) = gé%:): )Zg’f(QO),i. (3132)
The set of boxes {fjo (Zn) }ooez, ishenceaset of parallel boxes.

M aximal closure box of Z,,

The Maximal Closure Box I'*(Z,) of Z,, is defined as the minimal box I'*(Z,,) enclosing
the closure boxes '}, (Z,,), V0° € Z,,:

I~ﬂr(In) = {($2n72;x2n73a T 73€0>T eR™ 1. T; € [&7 Yz]} (3.133)
where
X; = min X;(6°) and X; = max X;(6°). (3.134)
- %I, 0°€Z,

Combining (3.132) and (3.134) leadsto

Xi = min {min Xo,s(e0)i} ad X; = max {max X, (g0).:} (3.135)
Equivaently,

X; = mi i X i andz = X if- 3.136

Xi ;IellIg{Yg}l(r:;n) Xo,v,i} ggf{yg}%n) Xo,v,i} (3.136)

Our am isto compute the dimensions X; and X, of T+ (Z,,). Tothisend, we first compute a
minimal box enclosing f(Z,,). Then, we compute the values for X; and X; using (3.136).

1. Computation of abox enclosing f(Z,,): the problem consists in finding some conser-
vative bounds on the coefficients of the controller f(#) when 6 describes Z,,. Equiv-
alently, our aim isto find the maximal variations induced on the coefficients ¢;, d; of
the polynomials C(¢) and D(&) such that the equality

A(€)C(&) +B(E)D(E) = X" (€) (3.137)

holds, where the coefficients a;, b; of A(£) and B(&) belong to Z; = [a;, ;] and
Ji = [bi, b;] respectively forany i = 0, --- ,n — 1. (3.137) can be written as:

M.X =x° (3.138)

With M = (A B) and X = (g) (3.139)
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where A, B € R?"*" and C, D € R" are given by:

[ 1 0 0 0 T [0 0 0 0
Ap—1 1 0 bn,1 1 0
Gp—2 Qp—1 1 0 bn72 bnfl 1 0
Ap—2 Qp—1 1 bn—2 bn—l 1
A= and B =

ag Ap—2 Ap—1 bo bp—2 bn—1
0 ag Gy 0 b bp—o

0 0 e ao | L0 0 e bo
CT=(1 ch2 cnos co) DT = (dn1 dn—2 do)

and where x° = (1,x3,,_o, "

-, x9)T € R?" isdefined by (3.124). The problem is

now the following: if the coefficients of M vary withinZ;, 7; fori = 0---n— 1, what
isthe set described by the solutions X of (3.138)?

Let M° denote the matrix of the form (3.139), associated with anominal system 6°
T,. Let M° + §M denotes the perturbed matrix corresponding to M°, where 6 M
can be al admissible perturbation matrix so that the coefficients a? + da;, b9 + b,
stay in the segments Z;, J; respectively for i = 0,--- ,n — 1. We denote by M the
corresponding perturbation set described by 6M. We call X° 4 §X the controller
associated to the perturbed system leading to the matrix M° + 5. We have then:

MO X =x° (3.140)
and (M° + 6M).(X° + 6X) = x°. (3.141)

Subtracting (3.140) from (3.141) yields:
(M° +6M).6X = —6M.X° (3.142)

Now, since Z,, contains only controllable systems, we know that M + §M is non-
singular for al M € D. Hence (3.142) can be written as follows:

6X = —(M° +6M)~'.sM.X° (3.143)
Hence:
16X |2 = [[(M° +6M)~1.6M.X° 2 (3.144)
Therefore:
16X Iz < |(M° + 6M) ™ I r2.|0M ]| 72. | X°I2 (3.145)
where ||.|| ;2 denotes the 2-norm induced norm in R2"*2", Consequently:
16Xl < T{(M° +6M) "} {SM ) XO (3.146)
where & (T') denotes the largest eigenvalue of the matrix 77'7". Then, since
1
F{(M° + M)} = (3.147)

a{(M° +4dM)}’
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with o(T") denoting the smallest eigenvalue of 77T, (3.146) yields:

ot < 01X e
Now, using the two properties
o{(M° +6M)} > o(M°) — 5(6M) (3.149)
and
F{6M} < V2max[5(5A),5(6B)], (3.150)
(3.148) leads to:
65, < _Y2IX I max{F(54), 7(6B)) (3150

(MO — 2max{7(6A4),7(0B)}
Therefore, any controller vector X° 4 §.X solution of (3.141) satisfies

16X ]2 < maxx Y 2IX 2 max{7(04),5(0B)} (3.152)
? = 6MED o(MO) — \/2max{5(6A),7(0B)} '

which gives bounds on the coefficients ¢;, d; of the controller associated with any
perturbed systemsin Z,,. Since

n—2 n—1
16X 3= "6ct+ ) dd3, (3.153)
i=0 j=0
we obtain, forany i = 0,--- ,n — 2:
e < V2|| X0|| maxsprep{max{z(5A),7(6B)}} (3.150
YT o(MO) — V2 maxgsyep{max{z(JA),5(6B)}}’
andforany j=0,--- ,n—1:
O — —
6, < V2| Xl maxsarep{max{a(5A),7(6B)}} (3.155)

a(MO) — V2maxsyep{max{7(JA),5(6B)}}

»Yn—1
(dag, - ,0an_1,6bg,--- ,6b,_1)T any perturbation affecting 6° leaving the system
0°+660inZ,. Cal M° = (A° B°) thematrix associated with 6° following (3.139).
The perturbed matrix M isthen M°+6M = (A+6A B+ 6B). Let X° bethevec-
tor associated to the controller f(6°) = (¢, ,c2_5,dS,---,d%_;)T and defined
in (3.139). Finally let § X be the perturbation induced on X° when 6° is perturbed of
06. Then the coefficients of the perturbation vector 6 X have the following bounds:

Summary: fix 0° = (af,--- ;a8 1,63, ,2_,)T asystemin Z,,. Denote by 56 =

V2|| X0 |2 maxsare m{max{7(5A),5(6B)}} ;
o(M°) — v2maxspye m{max{z(5A),5(6B)}}

|0c;| < n—2

b
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\/§||XO||2 maX5A4€M{maX{E(5A), E(éB)}}

2GS S0 Vamasserdma(a(04),56B))) 7

-1

Finaly, for any system 6 € Z,, the controller f(0) = (co, -+ ,cn_2,do, +* ydpn_1)T
associated with 8 is such that

V2|| X 0|2 maxspre pm{max{7(5A),7(6B)}}

lei — Y] < ,i<n—2 (3.156)
a(MO) — 2 maxspre m{max{7(0A),7(6B)}}
and
O — J—
0 <« Y2 missyerlmax(@GA)TOBNY e

o(MO) — v2maxspre m{max{7(0A),7(6B)}} ’

where the coefficients ¢, d9 are computed according to subsection 3.3.4.

. Computation of X, and X;: this step consists in finding some bounds on the coeffi-

cients of the polynomial Xy, 740y (&) when both 6 and 6° describe Z,,. Thisis equiva
lent in finding some bounds on the coefficients of the vector x solution of

(A B) (gi) =% (3.158)

where A, B, C° and D° have the same structure as A, B, C and D previously defined,

and their coefficients a;, b;, &), d? are calculated using (3.128). We denote by ¥ the

R

coefficient vector associated to the transformed closed-loop polynomial:

£+l

£(O = (€ - V" (G

) (3.159)
introduced in subsection 3.3.4.

(%.158) isa system of 2n equations with the 4n — 1 coefficients {a;}i=o,... n—1,
{bi}izo).: n—1, {d?}izoﬁ... n—1 and {é?}izo)... n—2- These4n — 1 parameters liein
the box P defined by

P 5 ~ ~ 7 4n—1
P:{(a()a"' aan—lyb()a"' abn—17607"' ,Cn_27d0,"' adn—l) e R*™ }

where &; € [a;, i), b € [bibi], & € [@,&% and d? € [d? %) The bounds é;,

@i, @ , B_Z are constant values determined by the dimensions a;, @;, b;, b; of thebox Z,,

according (3.128). The bounds &, &, d?, d° are computed following (3.128), (3.156)
and (3.157). T

Each of the 2n equations of (3.158) islinear in its 4n — 1 coefficients and is defined
on the compact set P, hence the minimum and the maximum of the coefficients X, are

reached on one of the corner of P forany i = 0,--- ,2n — 1.
Therefore, the computation of thei”{ equation in (3.158) on each of the 4n — 1 corners
of the box P leads to the family {x7},=1,... an—1 Of 4n — 1 candidate values for the
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coefficient X, of x. We finally compute the maximum and the minimum value of this
collection to obtain alower and upper bound on X;:

P — 1 Nj i ~j ) = o e —

X; j:l}r}lﬁnflxi and X; j:1,r-r-1-a,i(n71zi’ i=1,---,2n—1, (3.160)
which define the dimensions of I'*(Z,). The computation of the maximal closure
box I'*(Z,) of Z, is therefore completed. The next and last step is to apply the
Kharitonov's theorem on I'* (Z,,) to conclude about the strong robustness of Z,,.

Strong Kharitonov’stest

First remark that for any 6, 6° in Z,,, the closed-loop polyonimal Xo,f(90) (&) iscontained in
the maximal closure box T't(Z,,). As a consequence, if any element in Tt (Z,,) is strictly
Hurwitz stable, then Z,, is strongly robust. To complete this step we use Theorem 3.3.14. We
define the four polynomials:

Y1(&) =Xo + X1& + X262 + X38% + Xub* + X58° + X665 +

Y2(€) =Xo + X1& + X + X38% + X' + X56° + X85 +
v3(8) =Xo + X1€ + Xo€2 + X363 + Xa&* + X56° + X8 +
Y4(€) =Xo + X1€ + Xo& + X3 + Xu&' + X586 + X +

where the coefficients X;, X; are computed according to (3.160). If these four polynomials
are strictly Hurwitz, then the set 7,, istime-invariant strongly robust.

We now make the following remarks.

@)

@

Conservatism: thetest in Algorithm 3.3.18 is a conservative test, due to the approx-
imation steps necessary to obtain boxes of systems or interval polynomials and these
outer-bounding steps are necessary in order to use the Kharitonov’'s Theorem in The-
orem 3.3.14. As aresult, there is the risk that even if the initial box of systems Z,,
istime-invariant strongly robust, the test given in Algorithm 3.3.18 does not allow us
to draw any conclusion. More general a set in C,, might be strongly robust whereas
it is not enclosable in a strongly robust box of systems. However, the dimensions of
the maximal closure box on which the test is actually applied remain proportional to
the dimensions of the initial box Z,,. Back in an adaptive control framework, if Z,,
represents the uncertainty set on the true plant to be controlled, it is crucial to design
an input sequence such that this uncertainty set shrinks with time. Under this condi-
tion, our test on time-invariant strong robustness is guaranteed to become successful
in finite time. Thisissue isinvestigated further in Chapter 4.

Non-orthotopic bounded sets of systemsin C,,: any bounded set 2 can be enclosed
in an outer-bounding box of systemsin C,, defined in Definition 3.5. Then, the test
presented in Algorithm 3.3.18 can be applied on the obtained outer-bounding box.
If this test is positive, i.e., if the outer-bounding set is proved to be time-invariant
strongly robust, then © is time-strongly robust. Of course, conservatism of the test
given in Algorithm 3.3.18 isincreased if the bounded set to be tested is not a box of
systems.
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3.4 Weak strong robustness. the pole placement case

In Section 3.1, we emphasized in Remark 3.1.15 that a given set in C,, may be strongly robust
with respect to agiven control objectivewhilst it isnot strongly robust with respect to another
control objective. This led to the notion of weak strong robustness defined in Definition
3.1.16. This dependence control objective/strong robustness raises the following questions:
given aset 2 C C,,, with respect to what control objectives would €2 be strongly robust? If
such control objectives exist, how can they be computed and which one would be the’ closest’
to a pre-specified control objective, and what sense can we give to the notion of ' closeness
between two control objectives? Our objective isthis section is to investigate these questions
in the case of pole placement in some stable real poles. More than a complete study of these
guestions, this section presents preliminary results which, after a further investigation, could
be extended to any type of control objective that satisfies Assumption 2.1.13.

Definition 3.4.1 (Class of pole placements) Let F denote the set of pole placements which
amounts to place the closed-loop poles in stable poles:-- ,as,_1) € (] — 1,1[)?"~ L

A pole placement element &fis said to be admissible for strong robustness for a given set
Q c C, if Qis strongly robust with respect to this pole placement.

It follows from Definition 3.4.1 that any element in F can be described completely by a
(2n — 1)-upletin (] — 1, 1[)?"~1, representing the 2n — 1 desired poles.
Alternatively, any element in F isalso completely described by the 2n — 1 coefficients of the
desired closed-loop characteristic polynomial (i.e., the unique monic polynomial which takes
its zeros in the desired poles). For instance, consider the pole placement with given desired
closed-loop poles oy, - - -, aapn—1, With |a;| < 1, Vi. Let p denote the corresponding desired
closed-loop characteristic polynomial:
2n—1
p&) =po+ P&+ + a2 2+ = [ (€ - ) (3.161)
i=1

The considered pole placement can be described by the vector 1, composed of the desired
poles:
Vi=(ai, a9, 1) €(]—1,1))*! (3.162)

or by the vector V, composed of the coefficients of the polynomial p givenin (3.161):

Vo= (po, s pon—2,1)T € R¥HL. (3.163)

34.1 Set of pole placementsthat are admissible for strong robustness

Consider afixed set of systems )2 C C,,. The question we are asking is the following: what
are the pole placements element of F defined in Definition 3.4.1 with respect to which Q is
strongly robust? In this respect we have the following proposition.

Proposition 3.4.2 (A set of pole placements admissible for strong robustness) LetQ) C C,

be a given set of systems. For any pole placerifealement inF defined in Definition 3.4.1,
described either by a vector of the for(®162) or (3.163), let fi, denote the control law
that assigns with any systefne C, its controller fy (#) placing the closed-loop poles in
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the desired poles. Denoting hythe desired characteristic polynomial associated with
according to(3.161), fy is computed by Ackerman’s formula [72]:

fv(0) =—[0---01][B(9)--- A(6)*" " B(0)p(A(0)), V6 € Cp, (3.164)

where A(9) and B(#) are given in(3.18) and (3.19) respectively. Now, for an§ € ,
let By, denote the ball of systems @, with centerd and radius the complex structured
stability radiusrc A(8) + B(0) fv (0), B(8), I,,—1 defined in Definitior{3.2.3). For anyf €
Q, consider the set of pole placementsAnsuch that for any syste# € (, the ball of
systems3, - contains(:

Fo={VeF:QcC 897\/} (3.165)
Finally define the sef, as follows:
Fa=)Fe (3.166)
e

If Fo # 0, thenQ is strongly robust with respect to any pole placemenEin meaning that
any pole placement iffq, is admissible for strong robustness for

Proof: Suppose that Fo # 0. Then, V0 € Q and VV € Fo, Q C Byyv. Hence,
Q C (Ngeq Bo,v- Therefore, it follows from Theorem 3.2.8 that 2 is strongly robust with
respect toany V € Fq # (. Equivalently, Fq, is contained in the set of pole placementsin
F that are admissible for strong robustness for . -

Notethat the converse of Proposition 3.4.2 does not necessarily hold, sincethelargest strongly
robust set of systems containing a given system 6 < C,, for a given pole placement V€ F
might contain systems that are not element of the ball 5, 1+ defined in Proposition 3.4.2.

Theresult given in Proposition 3.4.2 provides uswith atheoretical way to check whether
agiven set of systems Q C C,, is weakly strongly robust or not. A question that naturally
follows this result is the following: how can this test can be practically performed? In the
general case of systems of order n, how to compute the sets of systems B, 3 defined in
Proposition 3.4.2 is not clear yet. However, the first order case is rather ssimple. Indeed we
already saw in Example 3.1.17 that whether a given set Q@ C C; is weakly strongly robust
or not can be checked geometrically. Also, the exact set of pole placements in a stable pole
can be computed. When this set is empty, 2 is not weakly strongly robust. On the contrary,
when this set is not empty, it depicts exactly the set of pole placement admissible for strong
robustness. Thisideaisillustrated in Figure 3.4.

It should be noted that the discussion addressed in Example 3.1.17 is till valid if the set
Q is not convex nor compact. However, let us focus on the case where 2 is a convex and
compact set. Then it is easy to check (geometrically or anaytically) that the set of stable
poles a €] — 1, 1] yielding strong robustness of {2 is convex. This means that if there exists
a1, azin] —1, 1] such that o; < ae, and such that pole placement in «; and pole placement
in ap are admissible for strong robustness for €2, then Q is also strongly robust with respect
to any pole o such that oy < a < as. This remark hence suggests that the set of poles
a €] — 1,1] yielding strong robustness of 2 may be computed by means of a dichotomy
strategy as follows. Suppose that we know a stable pole o such that  is strongly robust
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with respect to pole placement in ay.

Fixe €] —1—ag,1 — ag|. Denote a; — g + €.

1. If Q isstrongly robust with respect to pole placement in a4, then [ag, o] C Fq.

2. Otherwise, the upperbound of Fq isin [«g, aq].

By increasing or decreasing e, we would then estimate the lower and upper bounds of the
set of stable poles o €] — 1, 1] yielding strong robustness of €2, this with an arbitrarily good
accuracy. Then, since the set of stable poles a €] — 1, 1] yielding strong robustness of 2 is
necessarily convex, any pole located between this lower and upper bounds also yields strong
robustness for 2. Such strategy may be generalized to higher order cases, but this problemis
still under investigation.

3.4.2 Distance between polelocations

Now, what is interesting is to measure how "far” a pole placement admissible for strong
robustness is located from a given desired control objective. It naturaly requires the def-
inition of a notion of "distance” between two pole placements. Since the the pole place-
ment objective can be characterized in several ways, the notion of distance between two pole
placements, however it is defined, depends on the used description. For instance, suppose
V,V’ to be in the class F defined in Definition 3.4.1. Then there exist (a1, , @2,—1)
and (,617 v ,ﬁgnfl) in (} -1, 1[)2n—1 and (p(), s, Pan—2, 1) and ((Io7 . Qon—2, 1) inR2»
such that
2n—1

P&) =po+ i+ +pam 28 P+ = [ (€ ), (3.167)
=1
2n—1

9&) =q+qaé+ -+ @22+ = [ € -8) (3.168)

=1
Moreover, V; and V5 can be described by their associated control laws f,g : C, — R?"~!
defined in Assumption 2.1.13 by

F(0) =—[0---01][B(0) - A(6)* ' B(0)p(A(9)), 0 € Cn, (3.169)
g9(0) = —[0---01][B(0) -- - A(0)*" " B(0)]a(A(9)), V0 € Cn, (3.170)
where A(f) and B(6) are given in (3.18) and (3.19) respectively.
Hence we can define the distance between V4 and V5 in three different ways. First we can

define the distance d; (V, V') between V; and V5 in terms of distance between the desired
poles:

dl(V17‘/2) = H(ala e 7a2n71) - H(ﬁ(ﬁ o ;/627171)”' (3171)

Alternatively, we can define the distance d2(V7, V») between V; and V5 in terms of distance
between the desired characteristic polynomials:

dQ(Vla‘/Q) = H(p17 T >p2n72) - ||(q07 o 7q2n72)||~ (3172)

Or, we can define the distance d2 (11, V) between V7 and V; in terms of distance between
the associated control laws:

ds(V1,Va) = [|f — gl := sup || (6) — g(O)]]. (3173
0eQ
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Remark 3.4.3 The advantage of the distance d in (3.172) is its convenience for computa-
tions. However, this metric considerstwo control objectives V;, V5 closeto each other as soon
as their coefficients p;, ¢; are close to each other whereas from a stability point of view they
can be far from each other, since one can be stable and the second unstable. In this respect,
the use of the distance d3 defined in (3.173) might be more judicious since the closeness be-
tween two pole placements in the sense of the distance ds is somehow more representative of
how different the two pole placement will be in terms of the input control action.

3.5 Conclusons

In this chapter we motivated and defined the notion of strong robustness, whilst connecting
this notion to classical notions in control theory. One important contribution of this chapter
isto present a proof for the existence of strongly robust neighborhood around any system in
the considered class of systems. In the given proof, the continuity assumption (see Chapter
2, Assumption 2.1.13) on the map assigning with any system in our class of systems its
controller is motivated. Also, various tests resorting to various well known tools in control
theory (structured stability radii, infinite or finite LMI's, Kharitonov-like characterization)
have been constructed to check whereas specified subsets (balls of systems, polyhedral sets
of systems, orthotopic sets of systems) in our class of systems are strongly robust or not with
respect to a given control objective. Some of the tests for strong robustness presented in the
present chapter are computationally expensive or not tractable and are more afirst step rather
than a complete solution.
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Chapter 4

Set-member ship identification for
control

In this chapter an input design to guarantee boundedness and decreasing size of the un-
certainty set is proposed in the scenario of open-loop identification for adaptive control.
Although our aim will be later in this thesis to apply this input design to strong robustness-
based adaptive control algorithms, the scope of this chapter can be enlarged to the more gen-
eral framework of identification for control. The estimated system is a linear time-invariant
discrete-time SISO system of known ordevith modeling error unknown-but-bounded with

a known bound. The key idea in our approach is to consider-periodic input sequence and

to establish sufficient conditions ensuring boundedness of the uncertainty set in finite time.
An iterative input design involving a single design parameter leads then to an uncertainty set
of which the volume uniformly decreases with time.

4.1 Introduction

Aswe saw in Chapter 3, when little information is known on the system to be controlled, the
use of a certainty equivalence type of strategy may not be appropriate because asymptotic and
global stability of the closed-loop system cannot be guaranteed. |n order to resort to certainty
equivalence-type control methods, it is hence necessary to first decrease the uncertainty level
on the system to be controlled. In this chapter we are concerned with identification of an
uncertain linear system with unknown-but-bounded uncertainty with known lower and upper
bounds (see Chapter 2). The objective isto collect information of the system of interest until
enough is known to alow the use of a certainty equivalence-based control scheme. Since
we do not impose any further properties on the modeling error, e.g. statistical properties,
common parameter identification schemes such as recursive least squares may not be the
appropriate tool. Instead we adopt set membership identificatipnotion which has been ex-
tensively studied in the literature in the case of bounded-but-unknown uncertainty ([11], [12],
[45], [78], [79] and referencestherein). Loosely, thisamounts to finding a set, the uncertainty
set, based on measurements, that contains the true system description.

Because no probabilistic assumptions on the modeling error are imposed, each point in the

65
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uncertainty set isequally likely to represent the true system. Therefore within the uncertainty
set there is no natural candidate on the basis of which a controller could be designed. Aswe
saw in Chapter 2, theminimal - but stringent - condition that the uncertainty set has to satisfy
so that we can 'safely’ start a certainty-equivalence type of strategy is to be strongly robust
with respect to the desired control objective. Here the meaning of 'safe’ certainty equivalence
based control refers to the case where the three drawbacks exposed in Chapter 3 would be
non-existent. The question we are investigating in the present chapter is hence the follow-
ing: how to force identification so as to yield an uncertainty set which is strongly robust in
finite time? As previously discussed in Chapter 2, strong robustness is guaranteed to occur
provided that the uncertainty set is sufficiently small, i.e., when the radius of the smallest
outer-bounding sphere is small. Hence the above question might be re-formulated asfollows:
how to force identification so as to yield an uncertainty set which becomes arbitrarily small?
Since small uncertainty sets may be of interest to any type of control design of an uncertain
system, this question may be addressed in a much broader context than just discussions on
adaptive control involving strong robustness. Indeed, if the uncertainty set is small enough,
it may be expected that a controller designed for some nominal choice will also be useful
for every other system in the uncertainty set. A first example of such a nominal choice in
the robust control literature is the center of the enclosing sphere of smallest radius, known
as the Chebyshev centef the uncertainty set ([3], [8], [106], [108]). A second example of
such nominal choiceis the analytic centepf the uncertainty set, defined as the point in the
uncertainty set which minimizes the logarithmic average output error ([12], [8]). In order to
base a control design on such nominal centers for controlling the real unknown system, it is
fundamental that the uncertainty set is sufficiently small.

Obviously, the size and shape of the uncertainty set highly depend on the way the system is
excited [5]. A good input from an identification point of view is an input which leads to a
large amount of information about the real plant, i.e., a small uncertainty set. Such thinking
gave rise to the idea of optimal inputs[11], [45]: assuming an input structure and an input
energy level, one constructs an input so as to minimize a specified measure of the size of the
uncertainty set. Unfortunately, such optimal solutions depend on the true unknown system
[11], and thus cannot be computed a-priori. Paradoxally, a good approximation of these opti-
mal solutions for a given energy level would require the availability of a good model, hence
asmall uncertainty. This paradox istypical in adaptive control discussions: the best answer
to a problem often depends on the real unknown system to be controlled.

Now, rather than computing an input so as to exactly minimize the size of the uncertainty
set, another approach would consist in designing an input such that the largest size of the
uncertainty we could possibly obtain is minimized. Such an input would then be optimal in
the worst case possible, leading to a worst-case optimal inpul et us assume that a bounded
uncertainty set has been obtained on the basis of data measurements (this issue will be dis-
cussed further in this chapter). Since the true system parameters belong to the uncertainty set
at any time, one may compute the new input on the basis of this uncertainty set: thisinput is
the input with the pre-specified energy level which minimizes the worst-case (hence largest)
uncertainty set at the next time. A further discussion on thisdesign is postponed until Section
4.3.3.

However, the computation of such an’optimal input’ or ’worst-case optimal input’ for agiven
energy level involves some optimizations that are far from simple and that depend on the in-
put structure. Hence uniqueness of such optimal inputs is not guaranteed, and a comparison
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of different solutions in terms of suitability to the designer might not be clear. In addition, it
must be emphasized that even in the ideal case where such an’optimal input’ or 'worst-case
optimal input’ of given energy level would be obtained might not be enough for the control
purpose. Indeed, to obtain an uncertainty set with a minimized size for a given input energy
level does not imply that thissize will be small enough to lead to astrongly robust uncertainty
set and since it cannot be a-priori known how small the uncertainty set must be in order to
be strongly robust, it implies that the designer cannot know a priori to what level the input
energy must be set. In the case where the uncertainty would be too large, we should hence
re-iterate the design of the input by increasing the allowed input energy level, this until the
size becomes sufficiently small. But then, we may wonder whether we really benefit from
an iterative design consisting in increasing the energy level, compute the worst case optimal
input with this energy level, this until strong robustness is reached, in comparison with the
situation where we would fix the input structure and increase its energy level until strong
robustness is reached. Obviously the final required energy level using the first method will
be smaller than using the second method, however the optimization steps might be of high
computational complexity.

These are the reasons why in our approach we do not consider optimal inputs in the sense
of inputs that would minimize a measure of the size of the uncertainty set. Instead, we de-
sign an input sequence which leads to an uncertainty set that uniformly shrinks with time.
At each time instant, the updated input might not be optimal in the sense that the size of
the uncertainty set is minimized, but this size is guaranteed to decrease uniformly with time.
Hence strong robustness will be achieved in finite time. We assume all along this chapter that
a test to check whether this size is indeed small enough or not is available to the designer,
meaning that the input sequence that isthe object of the present discussion will not be applied
infinitely. This problem has been studied in Chapter 3.

Our input design will go along the two following lines. We first select an input structure so
as to minimize the number of design parameters, which brings us to select periodic input se-
guences with period 2n, denoting by n the assumed system order. Taking the 2n input values
as parameters, we then derive sufficient conditions so that the uncertainty set becomes arbi-
trarily "small” for the control purpose, considering two possible measures for size: volume
and radius. Our approach differsin two aspects from similar time domain designs reported
in the literature. Firstly, we aim explicitly at obtaining small uncertainty sets since small
uncertainty sets are necessary for control. This leads inevitably to input sequences of po-
tentially large magnitude. We shall see, however, that due to our construction, the inputs
will not grow beyond an unnecessary large threshold. Secondly, the systems that have been
studied in the literature regarding optimal periodic input design is restricted to finite impulse
response (FIR) systems, that is systemswith all polesin the origin [11]. Our class of systems
include arbitrary open loop stable input-output systems. We shall see that thisis a nontrivial
extension. The main reason for that isthat, contrary to the FIR case, the input sequence that
would minimize the radius of the uncertainty set explicitly depends on the unknown system
parameters.

This chapter is organized as follows. In Section 4.2 we formulate the problem statement.
Then, in Section 4.3, we focus on a class of periodic input sequences and give sufficient
conditions on the input values to guarantee the uncertainty set to be bounded in finite time.
However, these conditions depend on the true unknown system, and therefore cannot be ex-
plicited apriori. Thisisthe reason why in Section 4.3.3 we focus on the iterative design of an
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asymptotically periodic input sequence which guarantees that the conditions for boundedness
and shrinking volume are satisfied.

4.2 Preéiminariesand problem statement

421 Preiminaries

The uncertain system to be studied is described by linear time-invariant difference equations
of the form
y(k+1) = () p(k) + 6(k + 1), Vk, 4.2
where ¢(k) € R?" denotes the regressor vector at time & given by:
¢(k) = (—y(k) - —y(k —n+1) u(k)--u(k —n+1))T, vk,

denoting by u, y theinput and output sequences respectively, and 6, denotesthe true unknown
parameter vector given by:

0o = (an-1 -+~ apbu1 -+~ bo)" €C, NS, 4.2)

where S,, and C,, are the set of asymptotically stable systemsin P,, and the set of controllable
systems in P,, respectively as defined in Definition in 2.1.5. Finaly, ¢ denotes the model-
ing uncertainty and satisfies Assumption 2.1.10, i.e., § is bounded-but-unknown with known
lower and upper bounds d, ¢ so that

8 < (k) <9, Vk. 4.3

Identification for systems corrupted by deterministic modeling error can be done in many
ways. For the case of bounded but otherwise unstructured modeling error a large body of
research is devoted to set-membership identificatiofsee for instance [12], [79] and the
references therein). It consists in computing the membership sedefined in Chapter 2 as the
set of al models that are consistent with the available input-output data {&(¢) }o<i<k:

Gk) = ﬂ G (i), (4.4)

where G(k), Vk isgiven by
Gk)y={0 R : 5 <y(k+1)—0Tp(k) <3} (4.5)
G (k) isthe hyperstrip in R?" bounded by the two hyperplanes given by
Ho(k)={0:y(k+1)=0T¢(k)+d}and
H_(k)={0:y(k+1)=0"¢(k) + }.

Hence, after k measurements, k > 1, the set G(k) of parameters which are compatible with
the assumed model structure (4.1) and the measurements up to time & is given by

S(k) = Cn NS NG (k). (4.6)

S(k) defined in (4.6) is the uncertainty segt time k. The following properties were estab-
lished in Chapter 2.
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Property 4.2.1

1. Provided that|¢(k)|| # 0, the width of the hyperstrig (k) described in (4.5) is given
by
W(k) = (8 = 9)lle(k)|| ", Vk. (4.7

2. Yk > 2n — 1, the intersection formed by th@&n successive hyperstrips
{G(k—1i)}iz0.... 2n—1, is @ bounded polytope iR*" if and only if the vectors(k—i),
0 <i < 2n—1 are linearly independent [11], i.e.,

det(R(k)) # 0, (4.8)
where the matrix® (k) is the data matrix defined by
R(k) = [p(k —2n+1) -+ ¢(k — 1) ¢(k)] € R**2", (4.9)

Equation (4.8) is an excitation-type condition.
3. After N measurements(1),-- -, ¢(N), supposing that

max{{|¢(k)| | cos(d. ¢(k)) |} # 0, (4.10)

the parameter errof lies in the ball with centeé, and radiusp(N') where

5-6
N) = — = . 4.11
o) max<n{[[@(k)]]. | cos(0, ¢(k)) [} )

Clearly, from (4.11), a spanning set of regressors having a large norm with respect to the
modeling error levels §, § and satisfying (4.10) yields a smaller uncertainty set.

4.2.2 Problem formulation

In this chapter, the motivation of the designer is to control the unknown system. By control
we here mean the improvement of the performance of the system (4.1). For instance, the
control aim could be pole placement. Since this system is unknown, the designer can only
rely on an estimated system to design a "good” controller, provided that this estimate is
"good”. Therefore, wefirst perform set-membership identification until the uncertainty setis
strongly robust. More generally, the objective is to obtain an uncertainty set which is small
enough so that arelatively good controller can be obtained on the basis of this uncertainty set.
Hence, we emphasize that the identification objective is not to identify the exact description
of (4.1). Instead, we assume that the criterion that tells us whether identification can stop so
that the effort can switch to control design is satisfied if the uncertainty set is strongly robust
in the sense that has been discussed in Chapter 3. Moreover, we here suppose that, given an
uncertainty set, it can be measured whether this set is strongly robust or not.

Terminology 4.2.2 The notion of "size” of abounded set of systemsis taken to be alterna-
tively its radius, defined as the radius of the smallest outer bounding sphere, or its volume,
when specified. If the considered set is not bounded, its sizeis said to be infinite. Finally, we
say that asetis”small” if itssizeis small.
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Our motivation is the following.

Problem Statement 4.2.3 Consider the syste(d.1). Design an input sequenge(k)} such
that for any initial conditions)(0), the membership sét(k) given in(4.4) identified with this
input sequence becomes arbitrarily small with time, in the sense defined in Terminology 4.2.2.

4.3 Membership set estimation with a periodic input

In order to design an input sequence meeting Problem Statement 4.2.3, one reasons as fol-
lows. Assume that the two following conditions are satisfied:

i. G(k)isbounded in finitetime:
Jky : det(R(k)) # 0, VEk >k, (4.12)

where R(k) isgivenin (4.9).
ii. Thewidth (4.7) of the strip G(k) defined in (4.5) uniformly decreases with time:

Vk, 3K >k W) < W(k), (4.13)

where W(k) isgivenin (4.7).

Now remark that as soon as the uncertainty set becomes bounded, it stays bounded at any
further time. Moreover the widths of the strips G (k) are upper-bounds on the dimensions of
the uncertainty set G(k) provided that this set is bounded. Thusif i. and ii. are satisfied, the
radius of the smallest sphere bounding ¢ (k) becomes arbitrarily small with time. Next, we
proceed according the following steps: first we select an input structure, defining our design
parameters. Then we establish sufficient conditions on these design parameters so that the
conditionsi. and ii. are met. Finally, additional conditions are derived so that ii. is met.

4.3.1 Selection of theinput structure

In Problem Statement 4.2.3 the structure of the input to be designed is not specified and
could aapriori be of any kind. In this section we focus on solutions which would be easily
implementable whilst presenting a minimal number of design parameters.

Clearly, in order to have a bounded uncertainty set in the parameter space R?", G (k) must
result from at least 2n distinct measurements ¢(0), - - - , ¢(2n—1) meeting the condition (4.8).
Suppose the system (4.1) to be without modeling error (6 = 0). Then, forall k > 2n—1, (4.8)
can be seen asa system of 2n linear equationsin theinput valuesu(k —4),7 = 0,--- ,2n—1.
Thus, 2n isin some sense the minimum number of parameters that must be tuned. It is here
of relevance to refer to the frequency domain approach: in[102] it is shown that an excitation
used for identification of a linear system must effectively contain a minimum number of
distinct frequencies, and this minimum number depends on the number of parametersdefining
the system.

Following this discussion, we consider 2n-periodic input sequences of the form

’a(k’) = ut(;c), Vk (4.14)
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where the function ¢(-) : Z — Z,, is defined by
t(k) =k mod 2n, Vk € Z. (4.15)

Because of their simple structure, periodic inputs are easily generated and allow for asimple
analysis. For this reason they are typically used for system identification. In a frequency
domain approach, such inputs correspond to multi-sine signals ([5], [42], [71], [102]).

4.3.2 Boundedness of the uncertainty set

In this part we consider the class of 2n-periodic input sequences of type (4.14), taking the 2n
input values ug,- - - ,u2,_1 asdesign parameters. The objective isto find sufficient conditions
on these parameters so that the uncertainty set G(k:) obtained by using the input sequence
(4.14) isbounded in finite time. The uncertain system is described by:

y(k+1) = (0")"6(k) + 6(k +1), 6(0), (4.16)
where the regressor vector ¢(k) € R" is given by (4.2). To begin with, the superposition
principle allows us to decompose the output sequence y in (4.16) along two components:

y(k) = g(k) +ys(k), Vk, (4.17)

where ¢ denotes the 2n-periodic output sequence associated to the uncertainty-free system
with 2n-periodic input sequence {@(k)} and ys denotes the contribution of the uncertainty 4.
We then have:

Gk +1) = (0°)To(k), VE, (4.18)

and
G(k) = §(k + 2n), Vk, (4.19)

with
o(k) = (=jg(k) - — gk —n+1) a(k) - a(k —n+1))7, Vk. (4.20)

The sequence 7, defined as the unique solution of (4.19), (4.18) is usualy referred to as the
steady state outputn the sequel the symbol ~ refers to the system in steady-case, i.e., the
system with 2n-periodic input and output signals @, 5. Now, the output component ys due to
the uncertainty ¢ is given by

ys(k +1) = (9°) s (k) + 6(k + 1), ¢5(0), (4.21)
where
9° = (ap_1 - a1 ap)’ € R", (4.22)
and
¢5(k) = (—ys(k) - ys(k —n+2) ys(k —n+1))" € R",Vk. (4.23)
In particular, we have
$(0) = 6(0) + ((¢5(0))" o - un+1)” (4.24)
In order to find sufficient conditions on the parametersug, - - - , u2,_1 S0 that the boundedness

condition is satisfied, we now proceed in two steps. We first assume the output sequence is
equal to ¢ defined by (4.19), (4.18) and (4.20). This amounts to assume that the system (4.1)
to be uncertainty-free (6 = 0) and such that the input and output signals are the steady-state
input and output sequence, i.e., are 2n-periodic. Later we will relax these two assumptions.
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System in steady-state without uncertainty

Let usfirst consider the uncertainty-free system in steady state described by (4.19, 4.18, 4.20)
and (4.14). The output sequence § is 2n-periodic taking values yo = 4(0), -+, Y2n—1 =
7(2n — 1) and is hence given by

§(k) = yery, Yk (4.25)

wheret(-) isgivenin (4.15). We easily provethat yo, - - - , y2,—1 Satisfy
[yO Yy - an—l]Ml = [0 < 0bg by - bn—l] U, (426)

where M, € R?"*2" jsgiven by

r 1 Ap ceeay ap 0 . 0 7
0 1 . ag ay agp cee 0
m=| 00 ane do 4.27)
ap 0 0 1 A1 a1
ai ao 0 0 1 as
Lan1 QAnp2 -+ Qo 0 0 cee 1]
and U € R?"*2" jsthe circulant matrix [40] defined by
Ug Uy U - Up—1
Uq U9 (T Uug
U= : : oL : (4.28)
U2p—2 U2p—1 UO *°° U2p—3
U2n—1 Uo Uy -0 U2p-—2

Let gz?(k) € R2" denote the regressor vector with steady-state input/output val ues given by
$(k) = (=g(k)--- = G(k —n+ 1) a(k)---a(k —n + 1)),

Besides, we denote by R(k) € R2"*2" the matrix consisting of 2n successive regressor
vectors given by

R(k) = (¢p(k —2n+1) --- é(k)). (4.29)

Also, we denote by G(k) the hyperplane computed similarly to (4.4) on the basis of the
modeling error-free measurement ¢ (k):

Gk)={0 eR*> : j(k+1)— 60T d(k) =0} (4.30)

and finally é(k) is defined for all k& > 0 asthe intersection of the k planes G (k).

k

(k) = ﬂ Gi). (4.31)

=0

Qo
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Similarly to (4.8), Yk > 2n — 1, the 2n successive hyperplanes {G(k — i)}io.... 2n_1 @€
linearly independent in R?” if and only if

det(R(k)) # 0. (4.32)

Let usintroduce Q to be the following matrix:

—Yn—1 —Yn Yn+1 e —Yn—2
—Y1 —Y2 Yy - —Yo
QO _ —Yo ! —Y2 —Yon—1 c RQ"LXQTL (433)
Unp—1 U, Un+1 tet Up—2
(5% U9 us s Uug
L Uo Ui U2 o U2p—1

Definition 4.3.1 Given any matrixI’, we call row-permutation of’ any matrix obtained
by permutations of the rows @f. Similarly, we call column-permutation @f any matrix
obtained by permutations of the columng/bfAnd we call permutation ¢f any matrix ob-
tained by row-permutations and column-permutationg’offhe relation "is a permutation
of” is denoted by~.

The following can be easily verified:
R(k’) =Qo,Vk=n—2 mod2n,k>2n-—1,
R(k) ~ Qo,Vk #n —2 mod 2n,k > 2n — 1. (4.34)

Hence,
Vi >2n —1, det(R(k)) # 0 <= det(Qo) # 0. (4.35)

Moreover, the following theorem can easily be verified.

Theorem 4.3.2 M, Qo andU satisfy the equation:

QoM = MyU (4.36)
whereM, € R?"*2" js given by
[ by by e b1 00 0 0 b ]
4b2 4b3 e —bn71 0 0 0 O 7b0 4b1
*bn_l 0 0 0 0 0 4)0 te 47n—3 %n—Q
|0 0o 0 - 0 0 —by —b1 -+ —bpo —bps
M2 o ay a9 tee An— 1 0 0 s 0 aon (437)
as as tee QAp— 1 0 0 0 tee aq aq
Apn—1 1 0 0 0 0 Qo ap-3 An-—2
L 1 0 0 0 0 a a1 Gp2  Qp1 |
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Then, in [40], the following theorem is proved.

Theorem 4.3.3 Let M(zg, z1,--- ,xn—1) denote theV x N circulant matrix with entries
o, ,xn_1INC:
X0 x1 T2 -+ TN
1 Zo Trs - ZTo
M(zg, -+ ,oN1)= : : P, (4.38)
IN2 INa 2o - IN-3
TN_1 Zo X1 - ITN-2

M(zg,--- ,zn—1) has full row rank if and only |§cd(zz 0 :13251 &N —1)=1.
From Theorem 4.3.3 we derive the following corollary.
Corollary 4.3.4 The matrix)M; defined in(4.27) is invertible.
Proof: Using Definition 4.3.1, one can easily show that M, ~ M’, where
M =M(1,an_1,an_2, - ,a0,0,0,---,0) € R¥*2n, (4.39)

and where the matrix M(.) is defined in (4.38). Hence det(M;) = det(M’). Since the
true wstem is asymptotically stable, i.e, 8° € S,, it follows from 2.1.7 that A(¢) =
M+, ' 4,6 hasno zero onthe unit circle. ThUS 1 4 a1 €1 + -+ - + aof™ = EmA(EY)
has no zero on the unit circle, i.e., is co-prime with £2* — 1. From Theorem 4.3.3, thisimplies
that det(M’) # 0 and therefore det(A4;) # 0. This concludes the proof of Theorem 4.3.4. g

Now we have the following Theorem.

Theorem 4.3.5 Under the conditior{4.2), the following are equivalent:

i é( k) is bounded Vk > 2n — 1 (4.40)
ii. det(R(k)) #0, Vk>2n—1 (4.42)
iii. det(U) # 0 (4.42)
iv. ged(7 ug €2 — 1) = 1 (4.43)

Proof:

i. < ii. Duetothe2n per|0d|C|ty of ¢, we have: g( )= ﬂf"o YG(k—1i),Vk > 2n—1. We
conclude remarking that det(R(k)) # 0 < 2"y ' G(k — i) isbounded, Yk > 2n — 1.

ii. < iii. Corollary 4.3.4 impliesthat M, isinvertible. It follows from Theorem 4.3.2 that
det(R(k)) = det(MaUM;"), Vk > 2n — 1. Now, remark that the matrix M, € R2"*2?
given in (4.37) sdatisfies My ~ S(A, B) where S(A, B) is the Sylvester matrix associated
with the polynomials A(€) = €* + Y72} ax€®, B(€) = -7, brc® [93]. Hence, under
the controllability assumption in (4.2), S(A, B) isinvertible, implying that the matrix M in
(4.37) isinvertible. Since M isalso invertible (see Corollary 4.3.4), then det(R(k) # 0 <
det(U) #0,Vk > 2n — 1.

iii. < iv. directly follows from Theorem 4.3.3. m
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Remark 4.3.6 If det(Ms) = 0, then det(R(k)) = 0, Vk > 2n — 1, G(k) is thus never
bounded. Hence the controllability assumption in (4.2) iscrucid. If det(M;) = 0, i.e., if the
system to be controlled is not asymptotically stable, no conclusion can be drawn about the

boundedness of the set G (k).

Remark 4.3.7
(1) Aninteresting problem is the following: how to choose the input sequence so that any 2n
successive hyperplanes G(k — i), ¢ = 0,--- ,2n — 1 are as orthogonal as possible to each

other? Remark that in the case where KC(R(k)) = 1, where KC(R(k)) denotes the condition
number of the matrix R(k) defined in (4.29), then R(k) is an orthogonal matrix, i.e., the
planes {Q(k — 1) }i=o,... 2n—1 are exactly perpendicular to each other. Moreover, in the case
of acondition number closeto 1, the sensitivity of the boundedness condition (4.42) with re-
spect to modeling errors would be minimized. Hence, we consider the optimization problem
which consists in minimizing K(R(k)) = K(MyUM; ') over the set of matrices U, where
U, My and M, are defined in (4.28), (4.27) and (4.37). However, we see that because (M)
and KC(M; ) are unknown, to minimize KC(R(k)) over the class of matrices U defined in (4.28)
is an ill-posed problem. Indeed, a matrix U which would minimize K (MU M; ') for given
matrices M, M, does not necessarily minimize K(M5UM;~") for another choice M/, M
of the form (4.27), (4.37). Thisis easily checked in the case of first order systems, i.e., when
n = 1. Toillustrate this result, let us consider the two choices of set of matrices (M, M),
(M7, M3), defined by ag = 0.5,b9 = 5 and aj, = 0.9, b, = 0.5 respectively. They are hence
given by

1 05 0 5
Ml_{oa 1 } MQ_[l 0.5} (4.49)
, [ 1 09 , [0 05
My = { 09 1 } Mz = [ 1 09 } (4.45)
and we have
U= [ to } . (4.46)
up  Up

Inthisfirst order case, we have that the 2-periodic input sequence {ug, u1, ug, u1, - - - } Satis
fies (4.8) if and only if:

ud # u?, (4.47)
hence at least one of the two variables g, u; hasto be not zero. Without loss of generality,
let us suppose that u; # 0. Then we canwrite U = u,.U’ where U’ isthe matrix defined by:

ue
U= { FE— } . (4.48)

And clearly we have that
K(MUMY) = K(MoU' M), K(MaU(M7) ™) = K(MaU'(M7)~1). (449)

Hence, to study K(MoUM; ') and KC(MLU(M!)~') as functions of the variables ug, u; is
equivalent to study K (MU M b) and KC(M4U (M) ~') asfunctions of one variable 2. For
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this reason, we can suppose that u; = 1 and study KC(MoUM; ) and K(MyU(M])~ ") as
functions of onevariable . In Figure 4.1, werepresent the condition numbers (MU M)
and K(MLU(M{])™1) forug = 1, a0 = .5,bp = 5 and a, = .9,b), = .5, as functions
of ug € R\{1,—1}. If Jug| = 1, i.e, if the excitation condition (4.8) is not satisfied, we
have K(MUM;Y) = K(MLU(M])™') = oo, i.e, the matrix products M,UM; * and
MU (M;)~" areill-conditioned. These plots show that when KC(M,U M, *) is minimized,
K(MLU(M])~1) isnot minimized and vice-versa. Hence, the input value v that minimizes
the condition number of the product M,U M; ") depends on the choice of M;, M, of the
form (4.27), (4.37). Since the true system parameters aq, by are unknown, it is therefore not
possible to minimize KC(M,U M; ) apriori.

Condition Number Condition Number
) 100 §

80

607

50  -40 —30 4,9 -20 _10 08 206 04 020 02 O(fj 06 08

Condition Number
40
30

207

Figure 4.1: KC(MoUM;™Y) for (ag, bo)=(.5,5) (dotted line), (a}, b})=(.9,.5) (solid line).

For higher order systems this effect is likely to be even stronger, but thisis difficult to
analyze. Monte Carlo simulations, however, confirm thisintuition and show that for different
parameter sets, the condition number reaches its minimum values in different values of the
input values.

(2) Although the lack of knowledge of the matrices My, M- prevents us from minimizing
KC(MyUM7{ ) over the class of matrices U of the type (4.28), it is worth to note that

K(MyUMY) < K(Mo) K(U) (M) = K(Ms) K(U)K(M;). (4.50)
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Now, since M; and M, are fixed (but unknown), the upper bound of XC(M,UM; ') on the
right hand side of (4.50) isminima when K(U) = 1. We saw earlier that M, and M- arein-
vertible, hence the term IC(Ms).K(U).KC(M,) isfinite provided that U isinvertible. Clearly,
the situation where IC(U) = 1 by no meansimpliesthat /C(M,U M, ") isminimal. However,
for any matrix U of the form (4.28), if det(U) # 0, then it follows from Theorem 4.3.5 that

G(k) isbounded Vk > 2n — 1. A nice property of thisresult is that it is independent of the
unknown system (4.1). Following this discussion, we now focus on the parameterization of
periodic sequences that are solutions of X(U) = 1. We have the following result.

Result 4.3.8 The two following statements are equivalent.

i. K(U)=1whereU is given in(4.28).

ii. wug,---,us,_1 Meetther + 1 following conditions:
2n—1
Ji € [0,2n — 1] such thatu; # 0and Y uyp)uprj) =0, Vi € [1,n], (4.51)
p=0

wheret(k) = k mod 2n, Vk € N.

Proof: Denoteby wy, k= 0,--- ,2n — 1 the unit roots given by
wg = et (4.52)
It is shown in [65] that for any sequence {z;}i—0...2n,—1 € C>", the eigenvalues of the
circulant matrix M (xq, - - - ,xa2,—1) Of theform (4.38) are given by:
2n—1
)\k:(M(xm T 7$2n71)) = ( Z (“Jl”cn'%‘rn)E € R+7 k= 07 e >2n -1 (453)
m=0

Now, we have that the singular values of U given in (4.28) are given by

Jk(U):\/)\k(UTU), Vk:O,~~,2n—1. (454)

Now, we easily check that the matrix U”'U isthe circulant matrix satisfying

Ut = M(xo,'" 7$2n71)7 (4.55)
where xg, - - - , 22,1 are given by
2n—1
Ty = Z Ug(p) Ut (ptm)s M =0, ,2n — 1. (4.56)
p=0

Hence, using (4.53) and (4.54), the singular values of U are given by

2n—1
or(U) = (D wi'em)? €Ry, k=0, ,2n—1, (4.57)

m=0
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where xq, - - - , 22,1 ae given in (4.56). Using the Frobenius norm for the matrix norm,
we have: K(U) =57/c where @, o denote the largest and the smallest singular values of U
respectively. Hence IC(U) =1 if and only if o4, (U) =0, (U), ¥(k,p) and o, (U) #0, Vk. For
dlp=0,---,2n—1,let P(£), Q,(&) € C[¢] denote the polynomials defined by:

2n—1
PE) =Y zmt™, (4.58)
m=0
2n—1
Qp(€) = P(&) = P(wpé) = Y (1 — i )am™. (4.59)
m=1
Using (4.58), £(U) =1 if and only if:
P(wy) = P(wp),Vk,p=0,---,2n— 1. (4.60)
Then, notice that:
Wk = Wp-Wk—p,Vk,p=0,--- ,2n — 1. (4.61)

Hence, using (4.59), (4.60) and (4.61), we obtain that XC(U) = 1 if and only if Vk,p =
0,---,2n — 1 thefollowing is satisfied:

Qp(wik—p) = P(wk—p) — P(wp-wk—p) (4.62)

= P(wg_p) — P(wi) = 0.
(4.62) impliesthat Vp = 0, - - - , 2n—1, the polynomial Q,,(¢) of degree 2n—1 has2n distinct
zeros {wj }j=o,... 2n—1. Therefore, Vp = 0,---,2n — 1, the polynomial @, (&) is the zero
polynomial, which impliesthat =, = 0, Vm = 1,--- ,2n — 1. Hence, K(U) =1 is satisfied

if and only if {x,,,,m =0,---,2n — 1} ={x0,0,--- ,0}, with 2y # 0, which is equivalent
to say that (4.51) is satisfied. -

The following corollary follows from Result 4.3.8.

Corollary 4.3.9 Consider2n real-valued numbers,, - - - , us,_1 meeting the: + 1 follow-
ing conditions:

2n—1
Ji € [0,2n — 1] such thatu; # 0and Y wyp)usprg) = 0, Vj € [1,n], (4.63)

p=0
wheret(k) = k mod 2n, Vk € N. Leta denote then-periodic input sequence defined by
(k") = ug, V&' =k mod 2n, Vk. (4.64)

Then the identification of tpe uncertainty-free system in steady-state giyéri8yusing the
input would be such tha§ (k) = {6°}, Vk > 2n — 1.

Proof: Suppose that the input sequence is given by (4.64) where uq, - - - , us,_1 Satisfy
(4.63). It follows from Result 4.3.9 that K(U) = 1, where U is given in (4.28). Hence,
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Theorem 4.3.5 means that é(k) is bounded for any k > 2n — 1. Since § = 0, the strips G(k),
Vk, are in fact reduced to hyperplanes. Hence boundedness of the intersection Q (2n — 1)
implies that é(2n — 1) isreduced to a point set. Since #° é(k) for dl k, thisimplies that
G(2n — 1) = {#°}. And therefore G(k) = {6°}, Vk > 2n — 1. .

Remark 4.3.10 Any 2n-periodic impulse sequence of the form
{a(k),k=0,---,2n—1} ={0,--- ,0,u,0,--- ,0},u #0 (4.65)

satisfies (4.63). Note, however, that the 2n-periodic sequences which satisfy (4.63) are not
necessarily impulse sequences. For instance, for n = 2, the 3-periodic sequences of the form

2
. U
{a(k),k=0,--- ,3}:{u0,u1,u—;,—u1},u07é0 (4.66)

satisfies (4.51) and are not necessarily impul se sequences of the type (4.65).

System with modeling error and arbitrary initial conditions

We now suppose that the modeling uncertainty § in (4.1) isnon zero and that the system (4.1)
startsin any initial state. Hence the system is now taken to be given by (4.1, 4.2, 4.2, 4.3) and
(4.14). Asit has been previously discussed, we have:

where (k) has been previously studied and is given by (4.25), (4.15) and (4.26). Let us
now focus on the output component 5 due to the uncertainty on the system to be studied. It
satisfies the following equations:

ys(k+1) = 9§ ¢s(k) + 6(k + 1), ¢5(0), (4.68)

where the parameter vector 1, and the regressor vector ¢s(k) are given by

190 = (an_l s A ao)T (469)
gs(k) = (—ys(k) -+ —ys(k —n+2) —ys(k —n+1))", vk > 1. (4.70)
It can be shown that
k—1 ‘
lys (k)| < || Aol[*|¢s(0)] + max([3], 8]) > [|Ao|V, VE > 1, (4.71)
7=0

where ||.|| denotes the Frobenius normin R**" and A, € R and By € R™! are given by:

0 0 1 - 0 0

\
)
o
\
S
=
\
)
3
|
_
—



80 4.3. MEMBERSHIP SET ESTIMATION WITH A PERIODIC INPUT

Since the true system parameter vector isin S, i.e., the true system is asymptotically sta-
ble, then the polynomia A(¢) = " + Zf:_ol a; & is strictly Schur. We easily check that
det(Ap—&I,) = A(€) hence Ay is Schur stable. Therefore the expression in theright sidein
(4.71) is bounded by a constant depending on the matrix Ay, the initial condition ¢s(0) and
the modeling error level 6. Denoting by 775 this constant, we obtain that the output component
ys is bounded by a constant depending on § and the initial condition ¢s(0):

lys (k)| <75, Yk > 0. (4.72)
We have the following theorem:

Theorem 4.3.11 (Bounded uncertainty set) For any~y € R, define th&n-periodic input
sequence of the form
uy (k) = v.a(k), vk (4.73)

whereu is a2n-periodic sequence of the type14) such that its valuesy, - - - , ua,,—1 satisfy
(4.42). Then there exists > 0 such that the uncertainty sé(k) associated with the system
(4.1) excited by the inp#t.73) for this value ofy is bounded for any > 2n — 1.

Proof With any v > 0, associate the input sequence {u-,(k)} described by (4.73) where the
values u; satisfy (4.42). Now remark that for any k£ > 2n — 1, R(k) = R(k) + A(k) where
R(k) isdefined in (4.29) and A(k) € R?*"*2" jsgiven by:

[ ys(k—2n+1) ys(k—2n+2) - ys(k) 1
ys(k=3n+3) ys(k—3n+4) - ys(k—n+2)
Ak)= | ys(k—3n+2) ys(k—3n+3) - ys(k—n+1)
0 0 0
I 0 0 0 |

where |y;5(¢)| < vs, Vi, with 75 deduced from (4.71). Hence we have:
NAK)||oo < Y5, Yk > 2n — 1. (4.74)
Now, definethe function A : R?"%2" — R, by:
A(A) = det(Qo + A) (4.75)

where Q) is given in (4.33). Using Theorem 4.3.5 and (4.42), A(0) # 0. Moreover, A is
continuous. Hence 35, > 0 such that: if ||Al|ec < 01, then A(A) # 0. Hence, Yk > 2n — 1,
Yy > 0,if ||Al|oo /v < 01, then Ap(1/~.A) # 0. For al k& > 2n — 1, we have:

A(A(K) /) = det(Qo + A(k)/7) = 7" det(YQo + A(k)),

wherethe matrix A(k) isdefinedin (4.74). Moreover, Vk =n—2 mod 2n—1,k > 2n—1,
we have that R(k) = ~v.Qo, hence, A(A(k)/v) = v~ 2" det(R(k)) with R(k) defined by
(4.9). We hence proved that Yk = n — 2 mod 2n — 1, k > 2n — 1, 36; > 0 such that V-,
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if [|A(K)||oo/y < 01, theny =27 det(R(k)) # 0, i.e., det(R(k)) # 0. Takeyg = g—f Then,
Vk=n—2 mod 2n—1,k > 2n—1,if ||A(k)||c < Ts, identifying the system (4.1) using
the input defined by (4.73) with any value v > ~, guarantees that det(R(k)) # 0, i.e., G(k)
isbounded. The casewhere k #= n — 2 mod 2n, k > 2n — 1 istreated similarly, replacing
Qo by amatrix obtained after a finite number of cyclic permutations on the columns of Q.
This concludes the proof of Theorem 4.3.11. u

4.3.3 Arbitrarily small unfalsified set

We now use the results previoudly established to complete the design of an input sequence
yielding an arbitrarily small uncertainty set. First we prove the existence of such an input
sequence and later we see how this input can be explicitely designed.

Input sequence design for an arbitrarily small uncertainty set: existence

Many discussions involving the size of the uncertainty set and the design of optimal inputs
that would minimize such size can be found in the literature [1], [5], [11], [45].

Suppose the system (4.1) to be excited by a 2n-periodic input of the form (4.14) where
Ug, -+ ,Uzn—1 SASfY |u;] < T for afixed ' > 0. Suppose moreover that the output is
in steady-state, i.e., 2n-periodic. Let 2,,, denote the intersection given by

m+2n—1
Q= () G(k), Vm, (4.76)
k=m

where G(k) isgivenin (4.5). In[11], the authors show that when the system isin steady state,
the volume Vol ((2,,,) and the diameter Dia((2,,,) of Q,,, satisfy:

Vol (Q2,,,) < M7 Ym > 2n —1, (4.77)
| det(R(m))]
Dia(Q,,) < (6 — 8)||R(m) " |V2n, ¥Ym >2n—1, (4.78)

respectively, provided that (4.42) holds. The matrix R(m) is defined in (4.29). Moreover,
it is shown that these bounds are the tightest bounds that can be obtained if we have no
information on the modeling uncertainty except that it is lower and upper bounded by ¢, 6.
For FIR systems in steady state, asit is shown in [11], minimization of the upperbounds in
(4.77) and (4.78) isequivalent to the minimization of det(U') and ||U || respectively. Inboth
cases the minimizing input sequence does not depend on the unknown system parameters. In
our framework, however, R(m) ~ M,UM; ' where M, M, are given in (4.27), (4.37).
Hence the upperbound on the volume given in (4.77) is minimized for the input values such
that
{u;} = arg lm&xr | det(MyUM;Y)| = arg ‘mra<xr | det(U)], (4.79)
and the upperbound on the diameter given in (4.78) is minimized for the input values such
that
{u;} = arglm‘igF || MU M. (4.80)
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It is shown in [11] that minimizing the bound on the volume in (4.77) does not necessarily
lead to inputs that minimize the bound on the diameter givenin (4.78), and vice-versa. Indeed,
in the case where the uncertainty set would have amost all its dimensions very small but one
of these dimensions very large could lead to asmall volume but alarge radius. For our control
purpose, small in the sense of radius is more appropriate than small in the sense of volume.
It isinteresting to remark that even in our case, the input values satisfying (4.79) do not de-
pend on the real system parameters. However, due to the structure of the system (4.1), the
input values satisfying (4.80) do depend on these unknown parameters. And also, evenin the
case the radius of the uncertainty set is minimized, its value depends on the parameter vector
so it might happen that thisradius will still be too large for our control purpose. Hence, from
apractical point of view, it is not clear whether it makes sense to design an input sequence
with the idea to minimize the volume or the radius of the uncertainty set, since such input
depends on the unknown system.

Alternatively, one may reason as follows: since the true system parameters lie in the uncer-
tainty set at any time, and since this uncertainty set is bounded, it is theoretically possible to
compute the input values ug, - - - , ua,_1 Which would minimize the largest radius we could
possibly obtain at the next time. Attime k + 1, these values uf“ are solutions of the 'worst-
case’ minimization problem:

{uFt1} = arg min {arg max |[M UM Y|} (4.81)
lwil ST geg ()

where § = (an_1---ag by_1---ag)’. However, such an approach yields two problems.
First the optimization problem in (4.81) is rather complex. Then, even in the case where the
optimization problemin (4.81) could be performed, it isvery likely that the new inputs values
at time k + 1 will differ from the previous input values at time k. Hence it is far from clear
how the 2n-periodicity assumption of the input sequence can cope with such an approach.
For these reasons, we adopt a different strategy.

Suppose that (4.1) is excited by a 2n-periodic input of the form (4.73) where ug, - - - , uo, 1
satisfy (4.42) with v > 0. Intuitively, if ~ in (4.73) increases, then the output signal to output
error (ys) ratio is improved and therefore the effect of modeling error on these results is
reduced. Indeed, we have that y(k) = §(k) + ys(k), Yk, where ¢5 (k) is bounded according
to (4.72), hence |y(k)| > ||5(k)| —7s||, V. ||¢(k)|| can be made arbitrarily large by choosing
~ sufficiently large, thus |y(k)|, and thus ||¢(k)|| can be made arbitrarily large. It follows
from (4.7) that by choosing v sufficiently large, the width of the hyperstrips G(k), Vk, i.e.,
the dimensions of the uncertainty set can be made arbitrarily large. From this discussion,
it follows that by choosing ~ large enough, the radius of the uncertainty set can be made
arbitrarily small. We formalize this result in the following theorem:

Theorem 4.3.12 (Radius of uncertainty set) Suppose the input values, - - - , us,_1 to be
such that(4.42) holds. Then, for any > 0, and for any initial conditiony(0), there exists
vo > 0 such that for any valug > ~o, the radius of the smallest sphere containifig)
obtained when the system (4.1) is excited by the input (4.73) is smalle¢,than> 2n — 1.

Input sequence design for an arbitrarily small uncertainty set: algorithm

It follows from Theorem 4.3.12 that for any initial conditions ¢(0), there exists a 2n-periodic
input of the form (4.73) such that the identified uncertainty set associated with the unknown
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system (4.1) is small enough so that the desired robustness criterion evoked in Section 4.2.2
is satisfied in finite time. However, since the real plant is unknown, only an iterative tuning
of the parameter design ~ in (4.73) can lead to this desired input. Unfortunately, if the design
parameter v istime-varying, the steady state input/output values also are time-varying, hence
the periodicity of the input sequence is destroyed. For this reason, we increase the input gain
slowly enough so that periodicity is approximated, but also such that it grows without bound.
Thisleads to an input sequence of the form:

Uy (k) = ’qut(k) ) Vka (482)

where ug, - - - , ug,—1 Satisfy (4.42). The sequence {7} in (4.82) is strictly increasing and
grows without bound, i.e.,

Ve < ’Yk+1>Vk’a and khm Yk = +09, (483)
and it is asymptotically slow, i.e.,

Jm (e =) = 0. (4.84)

oo

We now introduce the main result of this chapter.

Theorem 4.3.13 (Input design) Suppose the system to be of the fédrh) whereg® € C,, N
S,.. Define the input by4.82) where the sequendey;; } satisfieq4.83) and(4.84) and where
Ug, - - ,Uan—1 Salisfy(4.42). Then, for any constant> 0, there exists a timé& > 2n — 1
such that the uncertainty sé(k) given in(4.6) is contained in a sphere with a radius smaller
thane, Vk > K.

Proof Suppose the input is of the form (4.82) and satisfies (4.42,4.83,4.84). Likein (4.67),
we decompose the output signal y(k) asfollows:

y(k) = yy (k) +ys(k), (4.85)

where y, u(k) isthe output sequence we would obtain if the modeling error was zero (6 = 0),
and ys (k) isthe output sequence given in (4.68), (4.70), we would obtain with the zero input
(uy = 0). We now study the two terms y, and ys Separately.

1. System without error modeling: we first consider the case where § = 0. Hence we
have: ys = 0. Let us consider any state space representation of (4.1) of the form:

w(k+ 1) = Az (k) + Bus (k) (4.86)

denoting by x(k) the state vector at time k, and where A, B and C are with appropri-

ate dimensions. We denote by o, - - - , 52,1 the steady-state output values given in
(4.26), corresponding to the 2n-periodic input sequence {a(k),k = 0,--- ,2n—1} =
{ug, -+ ,uan—1}. Hence, z(k),k = 0,---,2n — 1 is 2n-periodic and describe the

2n possible states of the system (4.1) if the input is the 2n-periodic input (4.14) with
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values ug, - - - ,u2,_1 and if the output takes the corresponding steady state values
Jos -+, Jon—1. We have then for all &:

#(k+1) = AZ(k) + Ba(k) (4.87)
§(k) = Ci(k).

Now, for all %, define the vector o, € R2"~! by
ay = x(k) — (k). (4.88)
Combining (4.82), (4.86) and (4.88), we get
apr1 = Ao + (Ve — Yeg1)T(k +1). (4.89)

Since the system (4.73) is asymptotically stable, A is strictly Schur stable. Moreover,
Z is periodic, hence bounded. Therefore, it follows from (4.84) that:

klim ap = 0. (4.90)

Thus, according to (4.88) we obtain that:

khﬂrgo(x(k) —veZ(k)) =0. (4.91)
Therefore, since (k) = Cz(k) and y, (k) = Cz(k) we have:
i (y, (k) =3 (k)) = 0. (4.92)

(4.92) means that asymptotically, the output sequence y, is equa to the output se-
guence § we would obtain in steady-state if the input was @, multiplied by the gain
sequence vy relating the actual input, u., to the 2n-periodic sequence . Since +y is cho-
sen to be increasing asymptotically slow, (4.92) can be roughly interpreted as follows:
the actual output sequence becomes arbitrarily close to a 2n-periodic sequence with
time. Roughly speaking, this intuitively means that our previous results, established
in the case of afixed 2n-periodic input sequence with constant values can be applied
asymptoticaly.

. System with modeling error: we now suppose the modeling error § to be non-zero.
Combining (4.85) and (4.88), the regressor vector ¢(k) defined in (4.2) can be re-
written as:

o(k) = ¢s(k) + Dpd(k) + Vi, VE, (4.93)
defining ¢5(k), (k) € R?", D), € RG*(21) and V;, € R2" by:
os(k) = (—ys(k) -+ —ys(k—n+1)0---0)", V&, (4.94)
(k) = (=g(k) - — Gk —n+1) ak)---alk —n+1))T, V&, (4.95)
Dy, = diag(Vk, -+ s Yh—nt1sVhs " s Vh—nt1)s (4.96)

Vi = (Cag, -+ ,Cag—_ni1,0---,0)T. (4.97)
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Then, for any k& > 2n — 1, using (4.93) we can rewrite the matrix R(k) in (4.9) as:
R(k) = A(k) + Vi + DiQo + Ek, (4.98)
where Qg is given in (4.33), A(k) is given in (4.74) and for any £ > 2n—1, the
matrices Vy,, £}, € R?"*2" are given by:
Vi=[Vi Vi1 Vieonp],Vk>2n—1,
Er=[0(Drs1 — Di)p(k+1) -+ (Dp—gns1 — Di)p(k — 2n +1)]
where Dy, is defined in (4.96). Now, it follows from (4.84) that

khm Ek =0. (499)
And using (4.90), we have that
Jim Vi =0, (4.100)

Moreover, by construction of the input (4.82), it follows from Theorem 4.3.5 that
det(DrQo) # 0. Since the matrix A(k) is bounded in norm according to (4.74), by
continuity of the determinant, we conclude from (4.98), (4.99) and (4.100) that there
existsatime K > 2n — 1 such that det(R(k)) # 0, Vk > K. From (4.8), thisimplies
that the uncertainty set based on 2n successive measurements is bounded after afinite
time. Finally, since the input gain grows without bound, ||¢(k)|| grows also without
bound and therefore (4.7) implies that the radius of the uncertainty set based on 2n
successive measurements can be made arbitrarily small. -

Example 4.3.14 Examples of sequences {vi }ren that satisfy (4.83) and (4.84) are v, =
log k and v, = v/k. We now illustrate our design method with an example in the first order
casen = 1. Wechoose (ag, by) = (0.8, 3) to bethereal unknown system, and the uncertainty
4 istaken to be arandom signal taking its valuesin [—0.5, 0.5]. We suppose that the known
bounds on § are such that —§ = ¢ = 0.6. Finally, we choose uy = 1.5 and u; = 0.3. For the
gain sequence v, = 'k, the set-membership identification using the input w(k) = ViUt (k) »
t(k) = k mod 2 Vk isillustrated in Figure 4.2. For the gain sequence v, = V/k, the set-
membership identification using the input u(k) = vruy (), t(k) = & mod 2 Vk is portrayed
in Figure 4.3. In both cases, the obtained membership set is plotted for 30 iterations, together
with a measure of the radius of the smallest outer bounding sphere centered in (ag, bg). As
expected, both cases |ead an uncertainty set which decreases uniformly with time. u

Remark 4.3.15 Because of the increase of the input gain ~, our approach might not look
appealing at first sight. However, since the system is unknown, no information tells us a
priori what value this gain should take so that the uncertainty set becomes small enough to
allow certainty equivalent control to be started. Hence to increase + is somehow unavoidable.
Having observed that increasing the gain is necessary for control purposes, it should also
be emphasized that within a complete adaptive control scheme the input gain will never be
increased more than necessary. Indeed, the ideais to no longer step ;. as soon as the uncer-
tainty set is small enough to be useful for control. It follows from Theorem 4.3.13 that this
happens after a finite number of iterations, which guarantees that the input sequence stays
bounded during identification.
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Figure 4.2: Set membership identification v, = vk, (ag, bo) = (0.8, 3).
Membership sets and actual parameters Largest dimension of the membership set
4 25 T T T - -
3.81
3.6r
[%2}
=
234 e
14
3.2
3l
28 . . . . . . . . . . . .
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0 5 10 15 20 25 30

a Time

Figure 4.3: Set membership identification v, =logk, (ag, bo) = (0.8, 3).
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4.4 Conclusions

In this chapter an input sequence design has been proposed in the context of set-membership
identification for control, to ensure that the uncertainty set becomes arbitrarily small with
time. This guarantees that within finite time, a certainty equivalence type of control strategy
can be safely started, 'safely’ in the sense that the control design can rely on any model in
the uncertainty set. Because the system is unknown, the time at which the designer can rely
on the uncertainty set to control this unknown plant cannot be given a priori. However, the
crucia point in our approach is that the input gain will not grow more than it is necessary
for control. Other input structures may be better than 2n-periodic inputs in the sense that a
strongly robust uncertainty set would be obtained in less time or putting less energy in the
identification input. However, the choice of a 2n-periodic input structure is here motivated
by its ssmple description and analysis.

In this approach, a unique design parameter ~ is required, and the choice of this parameter
is left free to the designer, provided that it increases without bound and is asymptotically
dow. Therefore the computational complexity of the proposed strategy is rather low. Note
however that the time at which the control phase can start depends explicitely on the increase
rate of the design parameter and it is still not clear how to choose the sequence v so that the
uncertainty set shrinks fast enough to achieve strong robustness but at the same time slowly
enough not to exceed the minimum input energy level required to achieve strong robustness.

In comparison with many input designs proposed in the literature ([1], [5], [11], [12]), our
approach isnot optimal in the sensethat it is not based on the selection of inputs which would
optimize some criterion related to the size of the uncertainty set. However, such optimal

inputs would depend on the unknown system. Therefore these methodsyield only estimations
of such optimal inputs, and the " goodness’ of these estimationsis related to the uncertainty
set. Thelarger the uncertainty set is, the poorer the estimate inputs are expected to be. For this
reason, it is not clear whether they lead to a smaller uncertainty faster. Thisis an interesting
problem which deserves further investigation. Finally, in this approach we considered the
two following assumptions:. the system to be controlled is asymptotically stable and its order
n is exactly known. If any of these two assumptions is violated, then the guarantee that
the uncertainty will shrink uniformly with time does not hold anymore. These are serious
limitations which should be considered in future work.
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Chapter 5

Strongly robust adaptive control

This chapter deals with adaptive control incorporating the notion of strong robustness in-
troduced in Chapter 3. The process to be controlled belongs to the class of systems defined
in Chapter 2 and the control objective belongs to the class of control objectives specified in
Chapter 2. Adaptive control based on strong robustness splits in two phases: as long as a
criterion checking strong robustness of the uncertainty set containing the true system to be
controlled is not satisfied, no control action is undertaken and attention is paid to identi-
fication only. Once the above criterion is satisfied, then effort is put on control, by means
of a classical certainty equivalence type of strategy. After presenting the general scheme of
adaptive control based on strong robustness, analysis shows that the limitations exposed in
Chapter 1 arising in standard certainty equivalence control systems are overcome by using
such a control approach. In particular, when strong robustness is achieved, which is guaran-
teed to happen in finite time using the identification input designed in Chapter 4, no pole/zero
cancellation phenomenon can occur. Moreover, the time-varying model-based controller will
stabilize the true plant to be controlled, irrespectively of the adaptation speed.

Further, to shed some light on the introduced method, a more detailed analysis of strongly
robust adaptive pole placement is given and a simulation example illustrates the effectiveness
of this approach.

5.1 Introduction

In Chapter 1, we have seen that traditional adaptive control of linear time-invariant systems
is based on the certainty equivalence principle. Rather simple from a computational point of
view, this paradigm yet suffers from three main drawbacks. First controllability of the esti-
mated is usually not guaranteed in practice, which may result in the paralysis of the adaptive
control system. Secondly, insufficient initial knowledge on the true system might involve
destabilizing model based controllers, in which case bad transients may be expected. Finally,
the time variations of the model and hence of the model-based controller could be so fast asto
disrupt asymptotic stahility of the control system. To avoid these three undesirable phenom-
ena, we ought to design an adaptive control scheme based on atest checking on-line whether
we risk to meet these three problems exists or not so as to decide when to put more effort on

89
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identification or control.
Suppose now that the following assumption holds.

Assumption 5.1.1 The true system parameté? belongs to a known subset of systems in
G € P, andg is strongly robust with respect to the (given) control objective.

Under Assumption 5.1.1, a traditional adaptive control scheme using certainty equivalence
could be started, keeping in G the model on which to base the control design at any time.
Then, due to strong robustness of the set G (see Section 2.2 in Chapter 2), the model se-
guence is guaranteed to keep controllability and to keep stabilizing the real unknown plant,
no matter how fast adaptation might go. Unfortunately, Assumption 5.1.1 requiresthat alarge
information on the system is available, which is not satisfied most of the time in the initial
set-up of adaptive control approaches. Hence, rather than supposing a priori that Assump-
tion 5.1.1 holds, one can raise the following question: how to achieve the situation where we
would know a strongly robust set of systems P,, containing the true system to be controlled?
In this case, then the control task could be carried out using a traditional adaptive control

strategy.

Inspired by this discussion, our aim is to design an adaptive control approach splitting in
two phases [27]: aslong as ho conclusion can be drawn concerning strong robustness of the
model set, which indicates that the danger of facing the above three undesirabl e effects exists,
we do not undertake any control action. Instead, we collect information on the true system to
be controlled, in such away that strong robustness will be achieved in finite time (see Chapter
4). We shall call identification phasehis first phase. Once a criterion indicating when the
model set is strongly robust is satisfied, the adaptive system switches to the control phaseln
this second phase, control can be started using a classical certainty equivalence strategy since
from that time on, the model isand will stay controllable while the time-varying model -based
controller is guaranteed to stabilize the true system at any time.

This chapter is organized as follows. We first formulate the problem statement this chapter
deals with. Then, we describe the general scheme of adaptive control based on strong robust-
ness. Further, the analysis of the algorithm is provided. Next we focus our interest on pole
placement design based on strong robustness, for which a more detailed analysis and sim-
ulation examples are given. Finaly, potential modifications of the general adaptive control
scheme are addressed for further research.

5.2 Motivation

We first remind the assumptions made on the system to be controlled and on the control
objective treated in this thesis (see Assumption 2.1.13).

Assumption 5.2.1 (System) The system to be controlled is of the form
y(k+1) = (0°)" o(k) + 5(k), $(0),

where
=@ ;- adbl - eC,nS, (5.1)

n—1 n—1
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is the unknown parameter vector afds the regressor vector given by
o(k) = (—y(k) -+ —yk—n+1) ulk) --- ulk —n+1))T € R?", (5.2)

The model uncertainiyis unknown-but-bounded with known bounds (Assumption 2.1.10),
i.e., is such that B
0 < 6(k) <4, VEk. (5.3)

The control objective is fixed and satisfies the following assumption.
Assumption 5.2.2 (Controller) The map
f:0eC,— f() e RM*Cn=D (5.4)

assigning any systemt = (a,,_1 -+ ag b,_1 - bg)T € C, with its controller f() €
R*(27-1) leading to the control law

u(k) = f(0)x(k), Vk, (5.5)
wherez is the state vector given by
z(k) = (y(k) - y(k—n+1)ulk—1) - ulk —n+1))L e R~ (5.6)
is single valued and continuous, and such that the resulting closed-loop system defined by

z(k + 1) = (A(0) + B(0) f(6))x(k) (5.7)
y(k) = Cz(k)

is asymptotically stable (see Definition 3.1.1). We recall th@), B(#) andC are given by:

B —Qp—1 cen N —aq —ag bn72 PN N bl bO 7
1 0O --- 0 0 0 B )
0 . . . .
: 0
: 1 : : Do
A= 0 0 0 o 0o (58
0 1
0
: : : : S
i 0 0 0 0 T
B@)=[by,-1 0 =+ 0 1 0 -+ - 0 }T (5.9)
c=[100 - 0]". (5.10)

We now formulate the problem addressed by this chapter.
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Problem Statement 5.2.3 (Adaptive control objective) The desired control objective is fixed
and satisfies Assumption 5.2.2. Given the measurenfet®s, y(k), k = 0,1,2,--- } gen-
erated by(5.1), the adaptive control objective is twofold:

e generate a sequence of inputs such that asymptotically the applied inputs equal the
inputs that would have been calculated on the basis of the true system parameters,
i.e.,u(k) — f(0°)x(k) ask — oo with f defined in Assumption 5.2.2;

e do not allow the adaptive system to involve any destabilizing controller, at any time of
the design.

Remark 5.2.4 The controllability assumption in (5.1) is motivated by the control objective
in Problem Statement 5.2.3. The assumption that the true system to be controlled (5.1) is
open-loop asymptoticaly stable is for the sake of open-loop identification as we will seein
the next section. Hence, as it follows from Assumption 5.2.2, the control objective is not
only to keep the real plant stable but also to improve its performance. The assumption that
the uncertainty ¢ is unknown-but-bounded according to (5.3) is chosen as the simplest case
of approximate modeling. In particular, no stochastic assumptions on the modeling error are
made. Moreover, the assumed structured of the uncertainty allows us to use the well-studied
set-membership identification approach introduced in Section 2.2.

5.3 Strongly robust adaptive control: description

The general scheme of adaptive control systems based on strong robustness is depicted in
Figure 5.1. As previously mentioned, two phases are distinguished in this control system
scheme: the identification phase and the control phase. In the identification phase, data mea-
surements are used to compute the set of all model candidate models that are consistent with
these measurements. Then it is checked whether all the elements in this set are controllable
or not. When controllability is guaranteed over the model set, it isthen checked whether this
set is strongly robust or not. When strong robustness is achieved, the system switches to the
control phase where a classical certainty equivalence type of control strategy is applied: at
each new measurement the model is updated within the strongly robust model set and the
controller isdesigned on thismodel. Applying this controller on the actual plant leads to new
input-output measurements, and subsequently, the uncertainty set, the model and the con-
troller can be tuned more accurately so as to improve the closed-loop performance. Next, we
describe in more details each block appearing in Figure 5.1.

5.3.1 Theidentification phase

During the identification phase, three tasks are completed at each new input/output measure-
ment: the membership set is first computed, it is then checked whether al its elements are
controllable or not. When controllability is achieved, then it is checked whether the mem-
bership set is strongly robust or not. Finally, if strong robustness is obtained over the whole
model set, the adaptive scheme exits the first phase, otherwise new measurement data are
collected and the three previous steps are re-iterated.
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Figure 5.1: Strongly robust adaptive control: iterative scheme
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I dentification input

During the identification phase, we apply the 2n-periodic input sequence constructed in Sec-
tion 4.3.3, Chapter 4 defined as follows:

where ug, - - - , us, 1 are arbitrarily chosen but satisfy the condition:
2n—1
ged( Y wi, & —1) =1, (5.12)

=0
and the gain sequence {~ } in (5.11) is strictly increasing and grows without bound, i.e.,
Ve < Ye+1, Vk, and klirrgo Vi = 00, (5.13)
and it is asymptotically slow, i.e.,
khjgo(%ﬂ =) = 0. (5.14)

We motivate the choice of such aninput in Section 5.4.1.

Compute the member ship set G (k)

The membership set at time & contains all candidate models, described by al the parameter
vectors 6 consistent with the input/output data measurements {u(z), y(¢) };<, generated by
the true system (5.1) when excited by theinput (5.11, 5.13, 5.14). Asshown in Section 2.2in
Chapter 2, G(k) is the polyhedron defined by

G(k) = () 6(i), (5.15)
i=1
whereG(i),i =1,--- , k isdefined by
G(k) = {0 € P, : 8 <y(k) — 0Tp(k — 1) <3}. (5.16)
Hence Q(k:) is computed as the intersection of the 2k half-spacesin R2" defined by:
{0 €Pu:yk)—0Tp(k—1) <6}, Vi<k (5.17)
{0 € Py :ylk)—0Tp(k—1) > 5}, Vi < k. (5.18)

Remark 5.3.1 The set defined in (5.15) might contain uncontrollable systems or systems
that are not asymptotically stable. However, from our prior knowledge, the true system 6, is
open-loop asymptotically stable and controllable. Hence it seemsthat a” good” model should
also be open-loop asymptotically stable and controllable, in which case we could substitute
to the model set A(k) obtained in (5.15) with its subset of controllable and asymptotically
stable elements § (k) NS, N C,. This suggests to perform some projections of the model
set G (k) on the set S,, N C,, S0 as to capture the features of the true system in the model
set. Nevertheless, the reason why we do not proceed in thisway isthat the set S,, N C,, isin
general neither convex nor closed, hence the resulting intersection G (k) NS,, NC,, might bein
turn not convex nor closed. However, convexity of the model set are fundamental properties
when performing a convex optimization method for the model estimation.
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Check controllability of any model in G(k)

In contrast to alarge number of adaptive control approaches [32], [33], [96], [70], the uncer-
tainty set (5.15) is a priori not assumed to be a subset of the class of controllable systems.
However, as we see further, the next step in the algorithm depicted in Figure 5.1, consisting
in checking the strong robustness of the uncertainty set, requires that all models are control-
lable. Asaconsequence, it isfundamental that the set of estimate models G(k), on which the
control design will be based, is asubset of C,, in finite time.

We now proceed in two steps. We first show that the use of the identification (5.11, 5.13,
5.14) leads in finite time to an uncertainty set which is a subset of the set of controllable
systems. Then, we derive a test that explicitely measures a time at which boundedness is
achieved. Subsequent to this discussion, the algorithm which allows usto test controllability
over the uncertainty set is given.

Thefirst question we need to investigate is hence the following: how to choose an input
sequence leading to a membership set whose elements are all controllable in finite time?
Since the true system 6° is controllable, the distance from #° to the set of uncontrollable
systems in P,, is strictly positive, hence there exists an open neighborhood of #° which is
a subset of C,,. Therefore, if the uncertainty set G(k) is sufficiently small, i.e., if G(k) is
bounded in R2" and if the radius of the smallest sphere containing G (k) issufficiently small,
then G(k) C C,, . Based on this discussion, we have the following result.

Theorem 5.3.2 (Identification input) Given any sef) C P,, let p(Q2) denotes the radius
of the smallest sphere containiifgycontained inP,,. By convention, if2 is not bounded,
p(Q2) = co. Consider the system given [y 1). Suppose that the identification inputs
such that the membership set giverg5ril5) satisfies:

lim p(G(k)) = 0. (5.19)

k—o0
Then there exist®; such thalG(k) C Cp,, Vk > T.

Hence, it follows from Theorem 5.3.2 that when resorting to an input sequence satisfying
Theorem 4.3.13 in Chapter 4, there exists afinitetime 7y such that G(k) C C,,, Vk > T;.

After we have shown that all modelsin the uncertainty set become controllable in finite time
if the input sequence is appropriately chosen, we now focus on the following problem: at
each time instant %, how to check in practice whether or not G(k) C C,? Indeed, the time
at which the condition G(k) C C, holds should be computed, so that the next task of the
algorithm starts in finite time. In this respect, the following result has been established in
Chapter 3.

Theorem 5.3.3 There exists a tim&;,oung > 2n — 1 such that

det[¢(Tbound) (b(Tbound - 1) o (b(Tbound —2n+ 1)] 7& 0. (520)

Proof: the proof directly follows from Theorem 4.3.13. m
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We saw in Chapter 4 that (5.20) is equivalent to say that the intersection formed by the
2n hyperstrips G(Thound)s =+ » G(Thouna — 2n + 1) is bounded. Hence, (5.20) guarantees
that the model set becomes bounded in finite time, and at the same time provides us with a
way to check practically whether the uncertainty set is bounded or not. Moreover, we have:

Vk > Thounds g(k) is bounded.

Now, once the test (5.20) allowing us to verify boundedness of the uncertainty set is fulfilled,
we proceed as follows in order to check controllability of the membersin the model set.

Algorithm 5.3.4 (Check controllability of any system in G(k)) Vk > Tyound, denote by

0* (k) the center of the smallest sphere of systenf8 jrrontainingG (k). Form the smallest
orthotopic set, (k) of systems containing(k), with center* (k). Recalling that any system
6 € P, has coordinates:

0= (anfl oo ag bp—1 - bO)T7 (521)
thenG, (k) is defined by
Go(k) ={0 € P, : a;(k)* — Aas(k) < a; < a;(k)* + Aa;(k),

where the2n dimensiong\a; (k) > 0, Ab;(k) > 0,i =0,--- ,2n — 1 of G, (k) are such that
Aa;(k) = min{A > 0: a;(k)*—A < a; < a;(k)*+A,Y0 € G(k)}, Yk > Thouna, (5.23)
and
Ab; (k) = min{A > 0: b; (k)" — A < b; <b;(k)* +A,Y0 € G(k)}, Yk > Thouna. (5.24)

Further, apply Theorem 3.3.5 to check Whetﬁék) C C,, or not: form the Sylvester matrix
Sa (k) € RGn=1x(2n=1) defined by

i Aao(k') Aal(k) 1 0 0
0 Aag (k) Ady (k) 1 :
: . 0
0 0 Aao(k‘) Aal(k) 1
Sal = Abo(K)  Ab (k) Ab,i1 (k)
Abg(k)  Abi(k) Aby (k) 0
0 - ' -
L Abg(k)  Abi(k) Aby,1 (k) 0 e 0

Similarly, form the Sylvester matriX* (k) associated to the center systéi{k) defined by
(5.25) replacing the terms\a; (k), Ab;(k) by af (k) and b} (k) respectively. Denoting by
o, @ the smallest and largest singular value respectively, we have the following result (see

Theorem 3.3.5 in Chapter 3). If
a(Sa(k)) <a(5(k)), (5.25)

thenG (k) C C,.
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Now, it follows from Theorem 5.3.2 and Theorem 4.3.13 that when resorting to the in-
put sequence (5.11, 5.13, 5.14), there exists a finite time 7t such that (5.25) is satisfied
Vk > Teont- Hence G(k) C Cp, VE > Teont-

Remark 5.3.5 The test proposed in Algorithm 5.3.4 to check whether a given uncertainty
set isin the set of controllable systems or not might be quite conservative, firstly because we
enclose the set to be tested in an outer bounding set, but also because (5.25) only provides us
with a sufficient condition for non-singularity of the Sylvester matrices associated with any
model in the uncertainty set. Therefore, if theinitial set of systems contains nearly uncontrol-
lable systems, it might happen that the set to be tested is contained in the set of controllable
systems whereas the outer-bounding polytope (5.22) contains uncontrollable systems. How-
ever, theinput (5.11, 5.13, 5.14) guarantees that the uncertainty set, and therefore the outer-
bounding polytopic set (5.22), become sufficiently small in finite time. Hence using such an
input ensures that (5.25) holds in finite time.

Achieve and check strong robustness

The test indicating when to switch to the second phase of the algorithm consists in checking
whether G () is strongly robust or not. Clearly, since the objective is to perform control of
the unknown plant, we must guarantee that the control phase starts in finite time, i.e., we
must ensure that the model set G(k) is strongly robust in finite time. This remark raises two
key issues: firdt, itis crucial that the identification input yields a strongly robust model setin
finitetime. Then, we must be able to test practically at each measurement whether the model
set is strongly robust or not. We now discuss these two issues and subsequently derive an
algorithm to test strong robustness of the uncertainty set.

Let us first concentrate on the following question: how to choose an input sequence leading
to a strongly robust membership set in finite time? Here we recall the following theorem
established in Chapter 3.

Theorem 5.3.6 (Existence of strongly robust open sets of systems) Around any system
0° € C, there exists an open strongly robust neighborhood of systet)s in

In the sequel, if the uncertainty set G(k) is sufficiently small, i.e., if G(k) is bounded in R?"
and if theradius of the smallest sphere containing G (k) is sufficiently small, thenit isstrongly
robust. Based on this discussion, we have the following result.

Theorem 5.3.7 (Identification input) Given any sef2 C P,, let p(Q2) denotes the radius
of the smallest sphere containify contained inP,,. By convention, if) is not bounded,
p(Q) = oco. Consider the system given ty1). Suppose that the identification inputis
such that the membership set givergsril5) satisfies:

lim p(G(k)) = 0. (5.26)

Then there exist$gr such tha@(k) is strongly robustyk > Tsg.

Therefore, in the case where the input sequence is such that G(k) is bounded and shrinks
uniformly with time, a strongly robust uncertainty set is identified in finite time, hence the
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adaptive system described in Figure 5.1 switches to the control phasein finitetime. As matter
of fact, it has been shown in Section 4.3, Chapter 4 that the input (5.11, 5.13, 5.14) is such
that G(k) is bounded and shrinks uniformly with time.

It isimportant to point out, and even emphasize, that after the adaptive scheme has switched
to the control phase, identification proceeds in a passive way, it is subject to control. Hence,
the identification input involved in Theorem 5.3.7 is truncated in the finite switching time,
meaning that we do not require the uncertainty set to shrink indefinitely, i.e., we do not re-
quire the the unknown parameter vector 6° to be identified exactly.

Not only it is crucia to ensure that the membership set is strongly robust in finite time, but
the adaptive scheme should also be able to measure at what time this condition is satisfied, so
that the switch can be activated. Otherwiseweloose al the benefit that the introduction of the
notion of strong robustness in adaptive control may bring. Hence, it is fundamental to have
an explicit test to check at each measurement whether the updated unfalsified set is strongly
robust or not. We remind that at this step of the design, any model in the membership set
is guaranteed to be controllable. Hence, the desired test amounts at checking a each time if
a given set of controllable systems is strongly robust. The construction of a necessary and
sufficient test for characterizing strongly robust sets in C,, is not trivial, and still requires
further investigation. However, note that what we essentially need is a sufficient test for
strong robustness. In this respect, we recall the following theorem obtained in Chapter 3.

Theorem 5.3.8 The seﬁ(k) C C,, is strongly robust if the following inequality holds:
V01,605 € G(k), [|f(62) = f(61)]| < re(A(61) + B(6:1)f(61), B(61, I20—1),  (5.27)

whereVd € C,,, the matricesd(#) and B(6) are given in(5.8), (5.9) and f () is the con-
troller given in Assumption 5.2.2 and (A(0) + B(0) f(6), B(0, I,—1) denotes the complex
stability radius of the matriXA(¢) + B(6)f(#)) with respect to the perturbation structure
(B(8), I2,,—1) (see Definition 3.2.3).

We have the following result.

Theorem 539 If the identification input sequence{u(k)} is such that
limy, . p(G(k)) = 0, wherep(G(k)) denotes the radius of the smallest sphere containing
G(k), then there exists; such that(5.27) is satisfied.

Proof: suppose theidentification input to be such that limy, ., p(G(k)) = 0. It follows from
Remark 5.3.5 that there exists atime K such that Yk > K, G(k) C C,,. Then by continuity
of the map f, we have that limy,_... p(f(G(k))) = 0, where p(f(G(k))) denotes the radius
of the smallest sphere containing f(G(k)) for k > K. Therefore, Ve > 0, 3k, > K such
thet V', f" € G(k1) then [|f — f'|| < e. Now, chooseany 61 € G(ki) ande =15, 5 1,
where rﬁlJrBlf(el) denotes the complex stability radius of the Schur matrix A; + By f(61)
with respect to the perturbation structure (B, I>,,—1) as defined in Definition 3.2.3 where
A, and B; are obtained on the basis of 6, accordl ng to (5.8) and (5.9)respectively. We
then have: Vf, f’ € G(ki) then ||f — f'|| < rAlJrBlf(g )- Hence, V0 € G(k1) we have:

[1f(61)— f(B2)]] < 7"A1+Blf(01)’ thisfor any 6, € G(k;) . Thus (5.27) issatisfied in k = k.
Clearly, thisimpliesthat (5.27) is satisfied, Vk > k;. -

The preceding discussion yields the following algorithm.
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Algorithm 5.3.10 (Check strong robustness of Q(k)) Vk > Teont, if
V01,0, € G(K), || f(02) — F(01)]| < rc(A(61) + B(61)f(61), B(01,Ion—1),  (5.28)
using the notation of Theorem 5.3.8, tké(ric) is strongly robust.

The identification input design (5.11, 5.13, 5.14) provides us with an uncertainty set that
satisfies Theorem 5.3.9. Hence the sufficient test for strong robustness (5.28) is satisfied in
finite time, allowing the overall scheme to switch to the control phase in finite time. Let
Tiwiten denote this switching time.

Remark 5.3.11 Weclearly have: 2n < Thound < Teont < Tsr < Tswitch-

5.3.2 Thecontrol phase

In this part we suppose that the set G (k) defined in (5.15) has been shown to be strongly
robust, i.e., k > Tywiten- The control phase is then started and relies on a classical certainty
equivalence type of strategy. During this phase, two main tasks are performed: the model is
updated, and the controller is designed on the basis of this estimate. Applying this controller
to thereal system leads then to new data measurement on the basis of which the membership
set will be updated.

Computethemodel f(k): at each measurement, the mode! 4(k) of the true parameter vector
0° is updated, leading to the new model (k + 1). Since 6, € G(k), we naturally choose
0(Tywiten) @ amember of G(Thwiten), and Vk > Tuyicen, the model 6(k + 1) is computed
as the orthogonal projection of the previous estimate 4(k) on the set gA(kﬁ 1) presented in
Section 2.2.3, Chapter 2. Asdiscussed in Remark 5.3.1, the convexity of G(k) iscrucial here
in order to use orthogonal projection. Thisleadsto the following update procedure introduced
in Chapter 3:

0(Twiten) s arbitrarily chosen in G(Tuwiten);
O(k+1) =arg min {(0 —0(k)T (0 —0(k))}, Yk > Tuwiten- (5.29)
0€G(k+1)

Hence, this update law is such that if the new measurement at time  does not bring any new
information pertaining the updating of the set G(k), then the model 6(k) is not updated.

Remark 5.3.12 If ||¢(k — 1)|| = 0in (5.16), then the set G(k) is empty. Hence, if the new
model at time k was obtained as the projection of the previous model on the new set G(k)
(asitisdone, e.g., in[72]), the case where ||¢(k — 1)|| = 0 would cause numerical problem.
This problem does not occur in our approach since at each time in the control phase, the
new estimate é(k:) is obtained by orthogonal projection of the previous estimate on the non-
empty set G(k) given in (5.15). According to (5.29), if ||¢(k — 1)|| = 0 occurs (which is
apriori possible in the control phase), G(k) = 0, hence G(k) = G(k — 1) # 0 and hence
(k) = O(k — 1) is defined.
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Design acontroller: Vk > Tiwiten, We have: Q(k) C C,, hence acontroller can be based on
the model at anyAtime. Following Assumption 5.2.2, at each time k > Tywitcn, WE COMpute
the contraller f(6(k)), leading to the updated control input law:

u(k) = f(O(k))x(k), Yk > Towiten (5.30)

This controller is then applied to the rea system (5.1) and a new data measurement
(y(k + 1), ¢(k)) is obtained from the real closed-loop system:

y(k+1) = (0T p(k) + 6(k) (5.31)
u(k) = f(O(k))z(k),
where the regressor vector ¢ and the state vector x are given by
o(k) = (—y(k), -, —y(k —n+1),u(k), - ,u(k —n+ 1)) € R*™, (5.32)

and (5.6) respectively. Based on the newly measured data, the new membership-set is updated
according to (5.15).

5.4 Strongly robust adaptive control: analysis

This section is devoted to the analysis of the adaptive control scheme proposed in Section
5.3.

5.4.1 Finiteswitchingtime

Theidentification input (5.11, 5.13, 5.14) is constructed so that the uncertainty set is proved
to strongly robust in finite time (Tywiten). Therefore the control phase is guaranteed to start
in finite time. Obviously, this switching time depends on the characteristics of the system
to be controlled (initial conditions and value of the unknown parameter vector 6°), on the
characteristics of the uncertainty § and on the chosen identification input. Intuitively, the
switch from the identification phase to the control phase is expected to occur faster (in time
or in term of energy level of the identification input) in the case of an uncertainty which is
small in norm compared with the measured data. In contrast, for large uncertainty level (and
conservative bounds ¢, §) we expect that more measurements or a higher input energy level
will be necessary before the system switches to the control phase. But it seems quite natural
that little prior knowledge on the system to be controlled requires alonger learning phase or
ahigher cost in terms of energy put in the identification input.

5.4.2 Convergence of themodel to thereal system

The convergence of 0 (k) to the true parameter vector isnot a-priori guaranteed and is depen-
dent on the input-output data that specify the uncertainty set G (k). Note that the proposed
scheme has the property of neutrality, i.e., in the case where the present uncertainty set is not
falsified by the new input-output measurement, the model and hence the model-based con-
troller are not updated. Hence, the adaptation process might stop during the control phase,
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leading to afrozen adaptive system. Of course, such a case does by no means imply that the
model error is zero, but simply indicates that the newly observed data do not bring any useful
information with respect to the identification process.

Now, we emphasize that the quality of the model is measured by its control performance and
not by its closeness to the real system. Indeed, the distance between the true model and its
estimate might be very small, while the true system might be controllable and the estimate
not controllable. Hence, amodel is good enough if it leads to good control performance. In
the sequel, convergence of the model to the real system is neither guaranteed nor necessary
in the presented adaptive control approach.

The model update law (5.29) provides the following properties[72]:

Property 5.4.1 The model error sequendé(k) — 6°} is bounded and non increasing:
1 0(k) = 6% (|| Ok — 1) — 6 ||, Wk (5.33)
and is asymptotically slow, i.e,
lim (|| (k) = 0° || = || 8(k — 1) = 6° }) = 0. (5.34)
It hence follows from these two properties that the parameter vector converges:
W ec,: lim O(k) =4. (5.35)

However, # = 6° does not necessarily holds.

54.3 Transent analysis

The proposed adaptive control approach mainly differs from classical approachesin the first
phase, therefore the transient analysisis key in its analysis. Intuitively, since a no time the
adaptive control system based on strong robustness involves any destabilizing controller, the
transient behavior is expected to be superior to classical certainty equivalence-based schemes
where, in contrast, the model-based controller may be temporarily destabilizing. A rigorous
proof of thisintuitive result in the case of pole placement can be found in the next section of
this chapter.

In addition it is worth recalling that, even in the case where at each frozen time instant the
closed-loop system would be obtained, stability of the time-varying system is not necessarily
maintained in classical approaches if adaptation istoo fast. In comparison, at no time in our
strategy a destabilizing controller is applied to the real system, and closed-loop stability is
guaranteed, regardless how fast the adaptation goes. Of course, the use of the identification
input of thetype (5.11,5.13, 5.14) may still generate poor transients, but this appearsto be the
inevitable price to be paid due to insufficient prior knowledge, whereas in classical adaptive
control approaches the bad transients serve no purpose.

54.4 Asymptotic analysis

Once the adaptive system has switched to the control phase, which is guaranteed to occur
in finite time, a classical adaptive control approach is used. Hence the asymptotic analysis
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is fairly standard [72]. The main characteristic of the asymptotic behavior, in the case of
adaptive Pole placement design [72] and adaptive Linear Quadratic control design [95], is
that the applied control law converges to the control we would obtain when using the red
system parameter. Furthermore, in contrast with classical adaptive control whereit must be a
priori assumed that for all &, the model (k) is controllable, and that all the limit points of the
model sequence {f(k)} are controllable, we do not have thislimitation. Indeed in our design,
as soon as the control phase starts, controllability of the model and of al the limit points of
the model sequence are guaranteed. In addition, at no time of our design, the time-variations
induced by the adaptation process cannot destroy stability of the closed-loop system. Hence,
bad asymptotic behavior caused by fast adaptation cannot occur.

5.4.5 Bounded input

It is shown in Chapter 4 that for the sake of the identification of a strongly robust uncertainty
set in the identification phase, the input energy level must be increased so that the criterion
for strong robustness described in Chapter 3 is satisfied. By construction of the identification
input (5.11,5.13, 5.14), strong robustness is satisfied in finite time, hence after such time
the identification phase stops, i.e., this identification input does not necessarily have to be
used any longer. This implies that the input sequence stays bounded in the first phase. In
the second phase, the input is designed according to (5.30), which also stays bounded since
the estimate on which the controller is designed is guaranteed to be controllable. Therefore,
boundedness of the input sequence « is guaranteed in both phases of the design.

5.4.6 Control performance

Since control performance is our ultimate goal, we have to be able to measure the perfor-
mance of the closed-loop adaptive system. When the performance of the system is considered
good enough, then adaptation of the parameter might stop. In general, measuring the closed-
loop performance of the system isnot atrivial task. However, in the case of pole assignment,
this can be easily done by measuring the actual (time-varying) closed |oop poles of the actual
system given in (5.31). When these poles are close enough to the desired ones, one might
freeze the adaptation procedure.

5.5 Strongly robust adaptive pole placement

After having presented the general philosophy of our approach, we feel that the best way to
give some insight in the introduced approach is to explicit the algorithm in a more specified
case, and we choose one of the most popular adaptive control problem: pole assignment.

Problem Statement 5.5.1 (Adaptive pole assignment) The system to be controlled is de-
scribed by
y(k +1) = (0976 (k) + 6(k), VE, (5.36)

whered® € C, NS, is the unknown parameter vector of the fo(Bil), ¢ is the regressor
vector given by5.2) andd(k) is the uncertainty at timé satisfying(5.3).
Given the measuremenfs(k),y(k), k = 0,1,2,--- }, generate a sequence of inputs such
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that asymptotically the applied inputs equal the inputs that would have been calculated on
the basis of the true system parameters, uék) — f(6°)z(k) ask — oo wheref(6°) is
the unique controller such that the closed-loop poles of the system defined by

y(k+1) = (0°) ¢(k) (5.37)
u(k) = f(6°)x(k)

are located in the desired stable polés;}i—1.... 2n—1, |a;| < 1. Moreover, no controller
destabilizing the true system should be involved, at any time in the design.

We now give the algorithm of adaptive pole placement based on strong robustness

Algorithm 5.5.2 (Adaptive pole placement based on strong robustness)

Initial conditions and fixed parameters
8; 8; ¢(0); {aitizr, 2015 G(0) = R?™;

Design parameters
{ Ve tren : 7 17, 7% >0 hmk—m(%ﬂ V) = 0;
(u()auh e 7’U12n71) € RQ” : ng(Zz 0 ulé-l 52” - ) =1
1. Identification phase, Vk > 0
e apply to the real systel(®.36) the identification input designed in Chapter 4 given by

u(k) = Yy, with t(k) =k mod 2n, Vk. (5.38)
whereuyg, - - - , ua,_1 are arbitrarily chosen but satisfy the condition:
2n—1
ged( D wi, & —1) =1, (5.39)
=0

and the gain sequendey; } in (5.11) is such that
Y& < Vk+1, Vk, and klim Vg = +00, (5.40)

and
khm (Vk+1 — %) = 0. (5.41)

e measurgy(k + 1), ¢(k)) from (5.36) and update the membership g&t:) into
Glk+1) =Gk)N{0: 0 <y(k+1) —6Tp(k) <}; (5.42)

2. Check controllability

e apply Theorem 3.3.5. 1f2.39) is not satisfied, re-iteraté., otherwiseT ., = k& + 1
and go to2..

3. Check strong robustness: Vk > Teont
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e apply Theorem 5.3.8. 1§5.27) is not satisfied, then re-iterate and3.. If (5.27) is
satisfied I witcn = k£ and go to4..

4. Control phase, Vk > Tiwitch
e compute the model:

0(Tywiten) is arbitrarily chosen inG (Tywiten ):
é(k + 1) = arg mln {(0 - é(k’))T(G - A(k))}7 Vk > Tiwitch- (543)
0eG(k+1)
e apply the control input .
u(k) = f(0(k))z(k) (5.44)
on the real plan{5.36) wherez is given in(5.6) and
F(O(k)) = F(A(O(K)), BO(k))) (5.45)

whereF is computed according Ackermann’s formula:
F(A,B)=—[0--- 01][B AB --- A>"2B|II(A), (5.46)

wherell(¢) = 2" (¢ — ;) is the desired closed-loop polynomial, ardd(k)),
B(6(k)) are given in(2.9), (2.10) replacingd by (k).

o measurgy(k + 1), ¢(k)) and compute the model g@tk) according to(5.42).

e k — k + 1 and re-iterated. until the closed performance of the system formed by
(5.36), (5.44) is satisfactory.

55.1 Asymptotics

The asymptotic analysis elements given in Subsection 5.4.4 apply here. The main (and de-
sired) feature of the controlled behavior isthat asymptotically, the applied control input equals
the desired control input we would obtain on the basis of the real system parameters.

(k) — f(0°)x(k)
||z(R)|

where u is computed according to (5.44), (5.45) [72].

Moreover, as soon as the control phase 4. starts, controllability of the model (5.43) at any
time and of all the limit points of the generated model sequence are guaranteed. In addition,
time-variations induced by adaptation do not endanger stability of the closed-loop system
(5.36, 5.44). Hence, bad asymptotic behavior caused by fast adaptation cannot occur.

=0, (5.47)

lim || 2
k—oo

5,5.2 Transent analysis

Our aim is now to show that the adaptive system described in Algorithm 5.5.2 has a better
transient behavior than the classical certainty equivalence-based pole placement ([72], Chap-
ter 4) when both methods are performed on the same initial system (5.1). For clarity of
presentation, we first treat the first order case, i.e, n = 1. Let usfirst briefly describe the
classical approach we are going to study.
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Classical adaptive pole placement in thefirst order case

The system to be controlled is supposed to be given by
y(k +1) +a’y(k) = 0°u(k), vk (5.48)

where 0 = (a°,b°) is the unknown parameter vector in S; N Cy, i.e.,, such that |a°] < 1
and b° # 0. Hence, the description (5.48) is a special case of the general case described by
(5.36), assuming the uncertainty ¢ to be zero.

The adaptive control objective is to design an input sequence (k) that asymptotically con-
vergesto the input sequence u° (k) we would obtain on the basis of the true parameter values:

a+a0
po

where o, |a| < 1 isthe given desired closed-loop pole.

u® (k) = y(k), (5.49)

The classical adaptive scheme proposed in [72] isthe following.

Algorithm 5.5.3 (Classical adaptive pole assignment in thefirst order case)
Initial conditions  0(0) = (a(0),b(0)) € R2, y(0).
Recursion vk > 0

e apply the control input given by

u(k) = y(k) (5.50)

whereb(k) # 0 is assumed to be satisfied thoughout the recursion.

e measuregy(k + 1) and compute

) _ 4 o (k) AT
Ok +1) = 0(k) + ”(b(k)HQ(y(kJr 1) —[0(F))" o(k)), (5.51)

taking (k) = (—y(k), u(k))

e k — k+ 1 until the closed-loop performance of the system consistir{§.48), (5.50)
is satisfactory.

Transient behaviors. a comparison

Clearly, the first problem when performing the adaptive scheme in Algorithm 5.5.3 is that
controllability of the estimate is not aways guaranteed, as nothing prevents B(k:) to be zero
in some times. Hence, without appropriate precautions, the adaptive scheme may be com-
pletely paralysed. Various modifications of Algorithm 5.5.3 have been proposed in order to
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solve this problem. For instance, we refer to [91] where the following approach is adopted: at
each iteration one compare the absol ute value of the coefficient b(k) to afixed positive value
ek, Wherethe sequence {¢;, } e isapriori given and strictly positive and decreases with time.
If b(k) < e, then one proceeds as in Algorithm 5.5.3. If b(k) < e, then amodified input is
applied so asto drive B(k + 1) away from the critical value 0.

Now, even in the case where the condition E(k) # 0 is dways guaranteed, Algorithm 5.5.3
might lead to arbitrarily bad undesired transients. In thisrespect we have the following result.

Proposition 5.5.4 (Arbitrarily destabilizing controller) For any systenfa’, %) € S; NC;
described by(5.48), for any initial conditiony(0), for any desired pole location, |o| < 1,
and for any integersV > 0, n > 0, there exists an initial estimaté(0), b(0)) of the parame-
ter vector such that Algorithm 5.5.3 performed for the set of vajiies v°), a, (a(0), 5(0))}
involvesn consecutive controllers which stabilize the true plgni8), followed by at least
N consecutive destabilizing controllers.

Proof: the proof of Proposition 5.5.4 is based on geometrical considerations. We first spend
some words on the geometrical properties of the set of systems leading to a controller stabi-
lizing the true system, what we design by set of stabilizing systems

(1) Set of stabilizing systems in the parameters space: we define the set S,0 ;0 of stabi-
lizing systems as the set of systems (a,b), b # 0 such that the control law based on (a, b)

according to
a—+a

u(k) = ——y(k) (5.52)
stabilizes the system described by (5.48). Hence

0
Sy = {(a,b) : |%(a+a) —a® < 1}. (5.53)

Equation 5.53 can be geometrically interpreted as follows (see Figure 5.2): define C+ to be

the cone with vertex (—a, 0) and boundaries the two lines going to (—a;, 0), (0, 1b+f;o) and

(—,0), (0, —1"_0—30) respectively, such that the elementsin C,. al have a second coordinate
b > 0. Similarly, define C_ to be the cone with the same vertex, the same boundaries, but
such that the elementsin C_ all have a second coordinate b < 0. We then have:

Sao,bo = C+ U Cf. (554)

Remark that theline G° going through (—a, 0) and (a", b°) represents the set of systems such
that when the associated controller is applied to the real system 2.1, the closed-loop pole is
exactly in .. And the complement of S,0 ;0 in R? isthe set of systems leading to controller
which destabilizes the real unknown plant (a°, b°). We now recall the following geometrical
properties which follow from the orthogonal projection algorithm used in Algorithm 5.5.3.

(2) Orthogonal projection algorithm: geometrically speaking, (5.51) means that the new
estimate §(k + 1) is computed as the orthogonal projection of the previous estimate d(k) on
the line given by:

G(k+1) = {(a,b) € R?* : ay(k) — bu(k) + y(k + 1) = 0}. (5.55)
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by G Sy = CaUC_
X1 = (0,] %))
X, = (0,1 £%))

a

Figure 5.2: Stabilizing controllers.

G(k + 1) has normal vector ¢(k) = (—y(k),u(k)) in the parameter space. Now, since
u(k) = %y(k)) (where b(k) is supposed to be always non zero), G(k + 1) has normal
vector (—y(k), &gf()kjay(k). Henceif y(k) # 0 and b(k) # 0, the vector (—b(k), a(k) + )
isnormal to G(k + 1) at any time k. Thisimplies that the vector (a(k) + a, b(k)) is parallel
to G(k + 1). Let us define G° as the line going through (—«, 0) and 6°. It follows from this
discussion that #(k + 1) is the orthogonal projection of §(k + 1) on G(k) paralely to G°.
Thisresult isillustrated in Figure 5.3. Now, the use of the orthogonal projection update rule

by G
K (a”,0")

(—a,())\ a

Figure 5.3: Orthogonal projection algorithm.
(5.51) guarantees the following properties.
Property 5.5.5 (Orthogonal projection algorithm )

0° € G(k), Vk. (5.56)
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Jim (a(k), b(k)) € G°. (5.57)
(5.56) impliesin particular that Vk, 6(k + 1) is the orthogonal projection of 6(k) on the line
going through #° and parallel to the line going through (—a, 0) and (a(k), b(k)). Thisleads
to the following result:

1@k +1),b(k + 1)) — (a(k), b(k))|| < [|(~e, 0) — (a°, 6°)], vk (5.58)

This equation means that at any time k, the parameter vector update "step” defined by
[|[(@(k+1),b(k+1)) — (a(k),b(k))|| isbounded by the fixedquantity ||(—a, 0) — (a®,°)]|.

Remark 5.5.6 By construction of (a(k),b(k)) (Figure 5.3) we have that the entire sequence
of estimates {(a(k), b(k))}ren islocated in the half-space with boundary G° containing the
true parameter vector (a°, °). Thisis shown in Figure 5.4.

Figure 5.4: Sequence of orthogonal projections.

We now have all the ingredients we need to prove the main result in Proposition 5.5.4. The
various steps of this proof are illustrated in Figure 5.5. We fix an integer NV, arbitrarily
chosen. Suppose that the initial estimate (a(0), b(0)) is on a boundary of the cone S0 o Of
systems yielding a controller stabilizing the actual system. Using Remark 5.5.6, we know
that (a(k),b(k)) € ]G°,(a(0),b(0))),Vk € N, where ]G°, (a(0),b(0)) denotes the open
half-plane with boundary G° containing (@(0),5(0)). Now, since G° € S,o 40 (Figure 5.2)
and using (5.57), there exists an integer nqo ,0 > 0 such that

(a(k), b(k)) € 16°, (a0, b0))\Su0 b0 Yk < 1g0 po; (5.59)
(a(k),b(k)) € Sao.40 Yk > ngo 0. (5.60)
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In other words:

(a(k),b(k)) leads to a controller destabilizing (a°, b°) Yk < 140 40; (5.61)
(a(k), b(k)) leads to acontroller stabilizing (a°, b°) Yk > n40 0. (5.62)

Now, by construction (Figure 5.4), we have that

Z |(a(k +1),b(k + 1)) — (a(k), b(k))|| > [|(a®, %) — (a(0), b(0))]] (5.63)
k=0
and
lim [i (a(k +1),b(k + 1)) — (a(k),b(k))||] = co.  (5.64)

11(a(0),5(0)) (=@, 0)[|=o0 1 =0

We now recall Equation 5.58:
1@k +1),b(k + 1)) = (a(k), b(k))|| < ||(=,0) = (a°,8°)|, VK (5.65)

Therefore,

1,0 30

> @i+ 1.6 + 1) = @) BEDI < mangel(-0:0) = (@] (569

Hence, using egquations 5.64 and 5.66, we abtain

_lim [12a0 40 [(—x,0) = (a”,0°)]]] = oo. (567)
11(@(0),6(0)) ~(=a,0) |00

Since ||(—a, 0) — (a®,b°)|| isafixed and finite quantity, equation 5.67 is equivalent to

~lim Ngo po = 00. (5.68)
11(@(0),6(0)) = (—a,0)||—o0

These results mean that for any integer N arbitrarily chosen, there exists an initial esti-
mate (@(0), b(0)) taken on the boundary of Syo po and far enough from (—c, 0) so that the
algorithm leads to at least N destabilizing controllers. To go further, construct the point
(@/(0),¥(0)) in such away that the orthogonal projection of (a/(0),¥(0)) on the line going
through (a°, 5°) and (a(0), b(0)) is (a(0), b(0)) (see Figure 5.5). Note that (a’(0 0),b/(0)) be-
longs to S0 40, i.€., the controller based on (a’(0), b’ (0)) stabilizes the real system (a°, b°).
The classical pole placement algorithm initialized with (&/(0), % (0)) would hence involve
one stabilizing controller (the controller based on (&'(0),5'(0)) ) followed by at least N
consecutive destabilizing controllers. Similarly, for any » > 0, we can construct an initial
estimate such that Algorithm 5.5.3 initialized with this estimate leads to n consecutive stabi-
lizing controllers followed by at least NV consecutive destabilizing controllers. This ends the
proof of Proposition 5.5.4. -
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Figure 5.5: Construction of a poor initial estimate.

Remark 5.5.7 Under the constraint that during adaptation the sequence of estimates
{(a(k),b(k))} is kept within the region corresponding to asymptoticaly stable systems
S1 = {(a,b) € R? : |a] < 1}, Proposition 5.5.4 till holds.

It follows from Proposition 5.5.4 that with insufficient prior knowledge on the system to
be controlled, classical pole placement might generate arbitrarily poor models, and subse-
quently arbitrarily poor controllers, leading to bad transients in the input-output response of
the closed-loop system. More precisely, Proposition 5.5.4 implies that it is not possible to
predict if the classical control system based on Algorithm 5.5.3 will behave badly or not by
looking at any arbitrarily large number of initial iterations, since destabilizing controller can
be generated at any time of the design. In addition, even in the case where at each frozen time
instant the closed-loop system would be obtained, stability of the time-varying system is not
necessarily maintained if adaptation istoo fast.

In contrast, at no time in our strategy a destabilizing controller is applied to the system to be
controlled, even in the case where the initial knowledge on the system is very small, hence
no bad transient behavior due to destabilizing controllers can occur and therefore the tran-
sient behavior of adaptive systems based on Algorithm 5.5.2 is superior to classical certainty
equivalence based schemes. Moreover, once the control phase is started, strong robustness
of the model set guarantees that the stability of the closed-loop system is preserved, despite
the possibly fast time-variations of the controller. Of course, identification inputs generated
in Algorithm 5.5.2 may still have atemporarily destabilizing effect, but this seems to be the
inevitable price to be paid due to identification of the initial unknown system.
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5.5.3 Simulation example

We now illustrate the ideas discussed in the previous sections by a simulation example. We
consider the system defined by (2.1) with
a®=09; =5 —5=05=0.1. (5.69)

The measurement error §(k) is auniformly distributed random signal with bound § and with
an off-set of value §/2. The control objective is pole placement in o = —0.3. The algorithm
isinitialized with: X
a(0) = —0.3; b(0) = 0.8; y(0) = 2.
We compare the performance of the system (5.69) and subject to the three following control
pole placement strategies:
e adaptive pole placement based on strong robustness according to Algorithm 5.5.2 us-
ing the identification input defined by:
u(k) = yrug if k iseven, (5.70)
u(k) = yuq if kisodd
where the values ug and u; are:

ug = 0; u; = 0.6, (5.71)
and
Ve = Vk+1,VEk. (5.72)

e classica pole placement given in Algorithm 5.5.3.

e the true’ control input based on the unknown parameters a°, b° given by:
a+a®
bO
The simulation results are depicted in Figure 5.6 and Figure 5.7. In Figure 5.6 the plot of
the three control inputs is given, while Figure 5.7 depicts the output responses of the three
corresponding control systems. We obtained that after three iterations the uncertainty set
identified with the input described in (5.70), (5.71) and (5.72) is strongly robust with respect
to pole placement in «.. Figure 5.6 and Figure 5.7 show that the performance of the adaptive
control system based on strong robustness is better than the performance of the classical
adaptive control system, since the transients are improved. Not surprisingly, these transients
don’'t completely vanish. By lack of initial knowledge on the real system, the learning phase
indeed requires for afew iterations some input-output signals large enough to achieve strong
robustness. Figure 5.8 shows the difference between the optimal control gain in (5.73) and

the model-based-control gain sequence of the form

og + aO _ og + d(k)
o b(k)
where the model sequence is obtained from classical adaptive control and adaptive control
based on strong robustness respectively. It shows that in this example the control input gain
sequence obtained from adaptive control based on strong robustness converges faster to the

true gain sequence than the control input sequence obtained with classical adaptive control
is. Therefore the control performance isimproved by the introduction of strong robustness.

u(k) = y(k), Vk. (5.73)

A(k) =

(5.74)
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Figure 5.6: Input signal.
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Figure 5.7: Output signal.



CHAPTER 5. STRONGLY ROBUST ADAPTIVE CONTROL 113

0.8

0.6 ! 4

04r

0.2

designed gain-true gain

-1 L L L L L I I

time

Figure 5.8: Difference between designed feedback gain and true feedback gain.

5.6 Further research

In this section, we briefly discuss how the adaptive control scheme presented in Section 5.3
may be modified. The first potential modification involves time-invariant strong robustness,
whereas the second modification includes weak strong robustness.

5.6.1 Time-invariant strong robustness and dwelling time

In the previous sections of this chapter, identification of a strongly robust uncertainty set is
the key issue, since actual control can start only after strong robustness has been reached.
The main drawback to this is that the test which allows us to test whether the uncertainty
set is strongly robust or not given in Theorem 5.3.8 has a complexity which grows very fast
with the considered system order. Hence we find appealing the idea of trying to decrease the
computational complexity, at least in afirst time period. To this respect, wefirst recall that in
order to be strongly robust, a given set of systems must necessarily be time-invariant strongly
robust (see Definition 3.1.10): the controller based on any model in this set has to stabilize
any other system in the set. Time-invariant strong robustness is already a stringent condi-
tion on the model set, however to test whether a set is time-invariant strongly robust may be
computationally more tractable than to test whether it is strongly robust (Subsection 3.3.4,
Chapter 3). This suggests therefore to split the identification phase described in Section 5.3.1
into two phases: at first we would collect information on the system to be controlled until
the uncertainty set is time-invariant strongly robust. This condition on the uncertainty set is
aready stringent but is satisfied in finite and reasonabl e time when using the input sequence
(5.11)-(5.14). Tothisrespect, it hasbeen provenin adlightly different context that stabilizing
the identified class of models automatically leads to stabilization of the true unknown system

[32], [97].
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Once it has been checked that time-invariant strong robustness is achieved, one may proceed

according one of the two following points of view. First time-variations of the controller

should aso be taken into account so that strong robustness is achieved: it should be checked

that the time-varying controller based on any sequence of systems in the uncertainty set sta-

bilizes any fixed system in the set. This could be done by checking if the uncertainty set

satisfies the condition (5.27) at any time. This method, where checking time-invariant strong

robustness is then refined into atest checking strong robustness, is a way to adapt the effort

put in the identification procedure to the desired level of information: time-invariant strong

robustness is less constraining than strong robustness and is easier to handle from a compu-

tational point of view.

Alternatively, one may already start control using adaptation of a model and certainty equiv-

alence, while checking at any time that the stability of the time-varying closed loop systemis
not disrupted. More precisely, at each time we would estimate a model according to (5.29),

compute the controller on the basis of this estimate according to (5.30), but at the same time
force the time-variations of the controller to be mild enough so that asymptotic stability of

the overall schemeis preserved. Such an idea suggests to introduce a so-called dwelling time
[32] between consecutive instants at which the model is updated, in such away that it would

be adaptively selected on the basis of collected data measurements. At the same time, one
could keep checking whether the uncertainty set becomes strongly robust or not; if strong

robustness is achieved, then the dwelling time could be put to zero since asymptotic stabil-

ity would be secured, irrespectively of the time-variations of the controller. However, how

to compute adaptively such a dwelling time in our framework is not clear yet and requires
further investigation.

5.6.2 Adaptive control and weak strong robustness

In Chapter 3, we introduced the notion of weak strong robustness as follows: aset Q2 C C,
is weakly strongly robust if there exists a control objective satisfying Assumption 5.2.2 in a
class of candidate control objectives such that € is strongly robust with respect to this control
objective. Now, suppose that we deal with adaptive pole assignment, i.e., suppose that the

adaptive control objective is to obtain closed-loop poles «;(k), ¢ = 1,---,2n — 1 that are
asymptotically equal to desired fixed stable poles a;, © = 1,--- ,2n — 1. In this situation,
one may compute at each time the set of pole locations {af,--- ok} C (] - 1,1))*» !

with respect to which the set G(k) would be strongly robust: if this set is not empty, i.e., if
G (k) is weakly strongly robust, then by comparing the position of desired pole locations to
the location of this set might shed some light on how the mode! set G (k) should be updated
so that at the next iteration, the desired poles arelocated in the set of poles for which G(k+1)
is strongly robust. Such method would indeed provide a way to minimize the time needed
to the identification of a strongly robust uncertainty set in the algorithm presented in Section
Section 5.3.

Although the practical application of thisideais not clear in the general case, it yields inter-
esting resultsin the case of first order systems. Given abounded set of systems G (k) C Py, it
is easy to compute the set of pole locations denoted by [, aps] for which G(k) is strongly
robust. Geometrically, the smallest pole value a,,, for which G (k) isstrongly robust, if it ex-
ists, is given by theintersection of the parallel line to the tangent to G (k) going through (1, 0)
with the a—axis. Similarly, the largest pole value v, for which G(k) is strongly robust, if
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Figure 5.9: Weak strong robustness and update of the model set.

it exists, is given by the intersection of the parallel line to the tangent to G (k) going through
(—1,0) with the a—axis.

If -1 < ., < apr < 1 asdepicted in Figure 5.9, then Q(k) is strongly robust with respect
to pole placement in any pole within [a,,, aas]. Now, suppose that the desired pole is «,
laf < 1.

1. If & € [apm, anr], then G(k) is strongly robust with respect to the desired pole placement,
hence the control phase can be started.

2. Ifay < a < 1,then Q(k) is not strongly robust with respect to the desired pole place-
ment. A way to see non-strong robustness is that the intersection of the cones ¢; and cs is
non-empty (see Chapter 3). Moreover, we see from the above geometrical consideration that
Q(k) can never become strongly robust if the systems corresponding to R, S in Figure 5.9
belongsto G (k). Hence, the identification could be forced so asto cut the points R, S off the
uncertainty set.

3. 1f =1 < & < @, then G(k) is not strongly robust with respect to the desired pole place-
ment. Moreover, we see from the previous geometrical considerations that G(k) can never
become strongly robust if the systems corresponding to 7', Q in Figure 5.9 belongs to G (k).
Hence, the identification could be forced so as to cut the points 7', @ off the uncertainty set.
Thus the position of the desired closed-loop poles with respect to the set of stable poles for
which the uncertainty set would be strongly robust would inform us about in which direction
the uncertainty set should be shrunk so as to become strongly robust as fast as possible.

5.7 Conclusions

In this chapter, the results of Chapter 3 and Chapter 4 have been exploited to revisit classical
adaptive control of linear time-invariant SISO systems in discrete-time with an unknown-but-
bounded uncertainty. Yet the tests proposed to check the controllability and strong robustness
conditions in our approach are only sufficient, hence results are conservative. However we
ensure that the multi-phase adaptive scheme based on strong robustness will in finite time
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perform the control of the unknown plant to be controlled. The analysis shows that bad tran-
sient cannot occur, in opposition to classical schemes where destabilizing controllers are a
priori not avoided. Of course, the approach proposed in this chapter is a general description
and still open questions remain. For instance, note that we expect the test for strong robust-
ness to be the more expensive task in terms of computation. Also, it might be interesting to
compute atest for strong robustness that would be recursive. Such atest would spare us with
rechecking the test for strong robustness over the whole set of model candidates at each new
measurement, and the computational cost of the approach would be much lower.



Chapter 6

Conclusions and further research

In this survey chapter, we first summarize the preceding chapters so as to point out their main
contribution. Efficiency and necessity of the strongly robust adaptive control methodology
are discussed, as well as the limitations that may be encountered when resorting to this
approach. Some of these limitations are related to the numerical tools used to tackle the
problems involved in the presented algorithm and could possibly vanish if other mathematical
or conceptual tools were used. On the other hand, some of the limitations are inherent to the
strong robustness approach, and cannot be reduced unless by considering other adaptive
control techniques. These two issues lead to our recommendations for further research.

6.1 Conclusions

In Chapter 1, the general context of the thesis, that of adaptive control, has been presented.
Classically, adaptive control approaches are derived from the certainty equivalence principle,
as it is briefly outlined next. First, identification methods deliver an approximation of the
plant (the model) and a level of accuracy of this model (the uncertainty). Second, based on
the model, a controller is designed to be applied to the real plant to be controlled. Clearly,
the performance achieved by this model-based controller highly depends on the quality of the
model but also on the assumed uncertainty. Thisisthe reason why when control performance
is not considered as good enough, new measurement data are used to identify a new model,
allowing the update of the model-based controller. Thisidea of adapting the model until per-
formance is satisfactory is the key idea governing adaptive control. It has been shown in the
literature (see Chapter 1) that most of certainty equivalence-based adaptive control strategies
yield control design in the sense that the controlled system will perform well asymptotically.
This is because the model is updated in such away that it becomes asymptotically good for
control. However, in theinitial phase, when model uncertainty islarge, there is no guarantee
that the model-based controller performs well when applied to the real system. An undesired
but no predictable case is when the model-based controller does not stabilize the true sys-
tem. Or, in an even more critical situation, the model could be uncontrollable. In addition,
due to adaptation, time variations of the controller may destroy asymptotic stability of the
control system. These three phenomena might lead to undesired transients or loss of stabil-
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ity, and are therefore highly undesired. Hence the question: How can one arrive at a high
performance closed-loop controlled plant on the basis of plant models that are validated by
measurement data, whilst insuring stability of this controlled plant at any ti@wa?sol ution

to this challenging question is the main object of this thesis. To tackle this problem, we re-
formulate it as follows: "What property should the set of all model candidates satisfy so that

the three drawbacks stated above vanish when using classical certainty equivalence adaptive
control methods?’ The answer to this question is that the model set has to be strongly ro-

bust. If strong robustness is achieved, then the time-varying model-based controller exists

and stabilizes the plant to be controlled, at any time of the design.

In Chapter 2, the mathematical set-up has been described. The system to be studied isa
linear, time-invariant and controllable SISO system with known order described in discrete-
time. Moreover, the modeling error is bounded-but-unknown, with known lower and upper
bounds. The control objective is left unspecified; however the map assigning to each model
in the model class its controller is continuous and it is assumed that the closed-loop sys-
tem obtained when connecting any model and its corresponding controller is asymptotically
stable.

In Chapter 3, the notion of strong robustness has been treated as a mathematical prop-
erty of a set of systems. Firgt, the definition of strongly robust sets of systems in the class
of systems presented in Chapter 2 has been given. Then, various notions related to strong
robustness have been defined: time-invariant strong robustness, weak strong robustness and
strong quadratic robustness. Animportant result in this chapter has been the proof that around
any system in the class of systems defined in Chapter 2, there exists an open strongly robust
neighborhood. The introduced strong robustness notions have been illustrated by means of
first order case examples. Furthermore, relationship between these presented notions and
classical robustness has been established. In particular, strong robustness measures have
been expressed by means of real and complex structured stability radii. This allowed us to
derive sufficiency criteriafor the strong robustness notions listed above involving structured
stability radii. However, to verify numerically whether a given set of systems satisfies such
testsis not trivial. In order to deliver a computationally tractable test for strong robustness,
attention has been then paid to polyhedral sets of systemsin canonical form in the class of
systems specified in Chapter 2, in the case of pole placement design. Under these assump-
tions, anecessary and sufficient test for strong quadratic robustness has been expressed under
the form of afinite set of Linear Matrix Inequalities. Next, a Kharitonov-like criterion to test
whether agiven set of systemsistime-invariant strongly robust for pole placement design has
been established.

In Chapter 4, an input design to identify a strongly robust set of models has been pre-
sented. Thisinput sequence is chosen to be 2n-periodic, where n is the order of the system
to be controlled. To begin with, the case where the output sequence is also 2n-periodic is
considered and conditions on the 2n design parameters are established to ensure bounded-
ness and decreasing size of the uncertainty set. Then, these results have been extended to the
non-periodic case, and the design of an input sequence yielding a strongly robust uncertainty
set in finite time has been explicitly given. Finaly, the effectiveness of this designed input
sequence in terms of decrease of the size of the uncertainty set with time has been shown on
afirst order example.

In Chapter 5, identification of a strongly robust uncertainty set and adaptive control
have been brought together, leading to strongly robust adaptive control. After having de-
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scribed this new adaptive control approach, its analysis has been provided. It has been shown
that undesired transients cannot occur when resorting to strongly robust adaptive control,
contrary to classical approaches where arbitrarily large transients may appear. Although our
method does not require the knowledge of the exact parameters of the system to be controlled,
controllability of the model and stabilizability of the model-based controller are guaranteed
and stability of the control scheme is preserved irrespective of the speed of adaptation. The
overall schemeisillustrated by means of afirst order example.

6.2 Recommendationsfor further research

Many questions related to the strong robustness approach depicted in this thesis remain open.
Limitations of the proposed approach are now examined and potential relaxation of these
constraints after further investigation is now discussed.

6.2.1 Can werelax the standing assumptions?

The results presented in this thesis have been established under the assumptions presented in
Chapter 2. Below, we investigate whether potential modifications of this new approach may
allow usto relax these assumptions.

e We assumed al along this work that the system to be controlled is open-loop asymp-
totically stable. This assumption is required for open-loop identification as discussed
in Chapter 3. However, if identification of a strongly robust uncertainty set could be
achieved by closed-loop identification, this assumption could be relaxed. On the other
hand, due to the complex interaction between identification and control in closed-
loop systems, identifiability problems may occur and it is not established yet how
closed-loop identification of a strongly robust model set could be performed. Further
investigation in this line of thought may be fruitful.

e Throughout this thesis, the order of the system to be controlled is assumed to be
known. In particular, the identification input design proposed in Chapter 4 tightly
depends on this assumption since it deals with 2n-periodic input sequences, where n
is the assumed system order. Now, one may desire to weaken the assumption that the
exact system order is known. For instance we may assume that only an upper bound
on this order is available, say, m > n. Note that the definition of strongly robust sets
of systems given in Chapter 3 still appliesto sets of systems that have different orders.
Now, to deal with adaptive control of a system with unknown order, how to modify
our strongly robust adaptive control method in Chapter 5? One answer to this question
may be to resort to a set of strongly robust adaptive control algorithmsrunin parallel,
each of these algorithms being deviced for a certain order value. It is not established
yet how such an idea could be developed but this would certainly be a nice solution,
at least in the case where a known upperbound of the true system order is known and
not too large.

¢ In thisthesis, the systems are described in discrete-time. However, all the presented
results can easily be mimicked to the continuous-time description. Characterization of
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strongly robust sets of systems in continuous time description could then be expressed
by means of Riccati equations, following the approach in Chapter 3 involving LMI’s.

e |t should be emphasized that the definition of strongly robust sets (and other related
strong robustness notions) can be extended to a much broader class of systems than
the class of systems defined in Chapter 2. In particular, time-varying systems could
be considered, leading to strongly robust sets of time-varying systems. In the same
line of thought, the case of nonlinear Multi-Input Multi-Output (MIMO) systems may
be investigated. However, it is far from clear how to compute the region of all model
candidates on the basis of data measurements when the system to be controlled is
MIMO and presents time-variations or nonlinearities in its dynamics. Moreover, ex-
istence of strongly robust sets of systems within this much broader class of systems
is not guaranteed and probably would require further assumptions on the considered
systems.

6.2.2 Test for strong robustness. conservatism issue

Asdiscussed in Chapter 3, only sufficiency tests to secure strong robustness have been estab-
lished up to this date, and these tests may hence be conservative. A first, very natural, question
to ask is: how conservative are these tests? This problem has not been examined in thisthesis
but would probably shed some light on when the proposed approach is inappropriate or, on
the contrary, very much advised.

Moreover, as aresult of the strong robustness test conservatism, it may happen that the iden-
tified uncertainty set is strongly robust while the sufficient test for strong robustness is not
satisfied. In such a case, more identification steps would be required before control can be
started, although control could be theoretically started earlier. To aleviate this problem, fur-
ther work should hence deliver a sufficient and necessary test to check whether a given set of
systemsis strongly robust or not.

6.2.3 Dowehaveto wait for strong robustnessto start control?

In the strong robustness adaptive control approach, validation of the test checking strong
robustness of the identified uncertainty set is the criterion which decides when control can
actualy start. However, this test has a complexity which grows very fast with the system
order. Moreover, due to the conservatism of this test, the time at which control actually
starts might be very large, although strong robustness may have been achieved at an earlier
time. In addition, strong robustness may be achieved only when the uncertainty set is very
small, requiring a large number of measurements. Hence the question: ”Is there a time
at which control can be started under appropriate precautions, although the test for strong
robustness is not yet validated, instead of waiting until this test is validated?’ In order to
be strongly robust, a given set of systems must be time-invariant strongly robust. Time-
invariant strong robustness is already a stringent condition on the model set, however to test
whether a set is time-invariant strongly robust may be computationally more tractable than
to test whether it is strongly robust. This suggests therefore to split the identification phase
described in Section 5.3.1 into two phases: first, we would collect information on the system
to be controlled until the uncertainty set is time-invariant strongly robust. Once it has been
checked that time-invariant strong robustnessis achieved, one may already start control using
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adaptation of amodel and certainty equivalence, while checking at any time that the stability
of the time-varying closed loop system is not disrupted by adaptation. Such an idea suggests
to introduce a so-called dwelling timebetween consecutive instants at which the model is
updated, to be adaptively selected on the basis of collected data measurements (see Section
5.6.1 and Chapter 5 for references to recent contributions involving thisidea). This dwelling
time should be kept small enough to guarantee that the adaptation process would not destroy
stability of the closed-loop system. At the same time, one could keep checking whether the
uncertainty set becomes strongly robust or not; if strong robustness is achieved, then the
dwelling time could be put to zero since asymptotic stability would be secured, irrespectively
of the time-variations of the controller. However, how to compute adaptively such adwelling
timein our framework is not clear yet and requires further investigation.

6.2.4 How data can serveidentification for strong robustness?

In Chapter 5, it appeared that the way the uncertainty set should be reduced geometrically
may give a hint as to how to choose the identification sequence so that strong robustness is
achieved asfast aspossible. Also, thelocation of the desired closed-loop poleswith respect to
the set of closed-loop poles that are admissible for strong robustness may inform the designer
on how much and how fast the uncertainty set should be shrunk so as to achieve strong
robustness. These ideas, clearly established in the case of first order pole placement (Section
5.6.2), are dtill far from trivial for larger order systems. In particular, one interesting question
is: What kind of geometry have strongly robust sets of systems? Unfortunately, this simple
guestion cannot be answered at a complete level of generality. For instance, if the true plant
to be controlled is squeezed towards the set of non-controllability systems, one expects the
largest strongly robust set of systems containing this plant to shrink. Further investigation
may relate the size of the largest strongly robust neighborhoods around a system to the level
of controllability of this system.

6.25 When to usestrongly robust adaptive control?

The main drawback of our approach isthat it involves computationally expensive steps, such
asthe computation of the membership set, thetest to check whether thisset isin the set of con-
trollable systems and the test to check whether strong robustness is achieved or not. Hence,
there may be some situations where one should certainly think twice before using strongly
robust adaptive controllers. Assuch, in the cases where poor-quality transients are not avery
serious problem for applications, one may instead resort to classical robust adaptive control
methods leading to much simpler controllers. However, it is important to note that when
prior knowledge is not sufficient to guarantee good transients, and when bad transients are
absolutely undesired, classical adaptive control methods may fail. If strongly robust adaptive
control is adopted, more effort has to be put in the identification part and the time at which
control of the system will actually start may be large, but no risk of bad transients will ever
occur. On the other hand, if classical adaptive control is preferred then control starts earlier,
but without any guarantee to keep transients acceptable nor guaranteeing that closed-loop
stability will be secured during the adaptation process.
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Summary

This thesis addresses a long-standing problem in adaptive control, that of the control sys-
tem stability in the transient phase. Classically, adaptive control methods are based on the
Certainty Equivalence Principle, according to the following ideas. At each iteration of the
design, amodel of the true system to be controlled is estimated using an identification pro-
cedure. Based on this model, a controller is designed to be applied to the rea plant, as if
there were no modeling error. Aslong as control performance is not satisfactory, the previ-
ous steps are repeated. However, when using such classical certainty equivalence principle
based strategies, three problems are of concern. Firstly, because of model uncertainty thereis
by no means any guarantee that the time-frozen model-based controller will stabilize the true
system. This may cause highly undesired transients in the control system behavior. More
importantly, there is no way to check a priori if the model is controllable. Unfortunately, if
controllability is not attained, no controller can be based on the model, implying a complete
paralysis of the adaptive control scheme. Secondly, even in the case where at any frozen time
the model is controllable and the controller based on this model stabilizes the real plant, if
model time-variations are too fast, then asymptotic stability of the adaptive scheme may be
destroyed.

To start with, the concept of strong robustnesgundamental in our work, is defined. A set
of systems is said to be strongly robust with respect to a given control objective if it meets
the following property: for any sequence of systems in this set, the time-varying controller
based on this sequence of systems stabilizes any other fixed system in the set. In our adaptive
control context, if we assume the model set to be strongly robust, then wherever the model
is updated within this set and irrespective of how fast adaptation goes, the corresponding
time-varying controller exists and stabilizes the true unknown plant. Hence, controllability
of the model and stability of the time-varying closed-loop system are guaranteed over time,
contrary to classical adaptive control approaches.

Following this idea, the main goal in this thesis is to design an adaptive control procedure
exploiting the concept of strong robustness. To achieve this aim, our approach is threefold.
As afirst step, strong robustness is studied as a mathematical object (Chapter 3). In particu-
lar, attention is paid to the geometrical properties of strongly robust sets of systemsfor given
control objectives, mainly pole placement design and linear quadratic control. The systems
under consideration are linear and time-invariant SISO systems in discrete-time description,
with an unknown-but-bounded modeling error with known upper and lower bounds and with
aknown order. A fundamental result is the existence of non-trivial strongly robust neighbor-
hoods around any system in the considered class of systems. Then, sufficiency tests for the
characterization of strongly robust sets of systems have been expressed by means of various
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control theory tools such as linear matrix inequalities and a Kharitonov-like test.

The second step in our approach (Chapter 4) is to relate the concept of strong robustness to
identification for adaptive control. In this respect, attention is paid to the following question:
in the perspective of identification for adaptive control, how to obtain a strongly robust set of
models? To solve thisidentification issue, we design and implement an open-loop identifica-
tion input design ensuring that the uncertainty set becomes strongly robust in finite time.
Thethird and last step in our approach istorevisit classical adaptive control exploiting the no-
tion of strong robustness, so asto yield the so-called strongly robust adaptive contr¢Chapter
5). At each time of the design, instead of blindly using the model to achievethe control design
asitiscommonly donein classical adaptive control approaches, one first checks whether the
set of al model candidatesis strongly robust. Once this condition is met, which is guaranteed
to happen in finite time, one then proceeds to control using a classical certainty equivalence
type of strategy. The developed adaptive control scheme hence splits in two phases. In the
first phase, focus is mainly put on off-line identification of a strongly robust model set. At
each time instant, a criterion tells whether strong robustness is achieved or not. When this
criterion is satisfied, the adaptive control switches to the second phase, the control phase,
where effort is shifted to control according to a certainty equivalence strategy. Proceeding
in this way, one secures asymptotic stability of the closed-loop system, whilst ensuring that
initial uncertainty will not yield undesired transients.

The strong robustness-based adaptive control method is presented in a general framework.
Finally, particular attention is paid to the case of strongly robust adaptive pole placement
design for which a detailed analysis and some implementation aspects have been proposed.



Samenvatting

Dit proefschrift behandelt een bekend probleem in de adaptieve regeltechniek, te weten de
stabiliteit van het regelsysteem in de initiéle fase. Traditioneel zijn adaptieve regelmethoden
gebaseerd op het zekerheids equivalentie principe. Tijdens elke iteratie wordt een model van
het te regelen systeem geschat met behulp van een identificatieprocedure. Gebaseerd op dit
model wordt een regelaar ontworpen die op het werkelijke systeem wordt toegepast al sof
er geen modelleerfout is. Zolang de prestaties van het regelsysteem niet bevredigend zijn,
worden de voorgaande stappen herhaald. Met a goritmes gebaseerd op het zekerheids equiv-
alentie principe zijn drie problemen te onderscheiden. Ten eerste is er vanwege de model-
onzekerheid geen enkele garantie dat een regelaar gebaseerd op het model het werkelijke
systeem zal stabiliseren. Dit kan zeer ongewenste overgangsverschijnselen veroorzaken. Ten
tweede is er geen manier is om van tevoren te garanderen dat het model regelbaar is. Helaas
kan er geen regelaar op het model gebaseerd worden als het model niet regelbaar is. Ten derde
kan, zelfsin het geval dat op elk tijdstip het model regelbaar is en de regelaar gebaseerd op
dit model het werkelijke systeem stabiliseert, de asymptotisch stabiliteit van het adaptieve
schema teniet worden gedaan als tijdvariaties in het model te snel zijn.

In dit proefschrift wordt eerst het concept sterke robuusthejddat fundamenteel is in
ons werk, gedefinieerd. Een verzameling systemen wordt met betrekking tot een gegeven
regeldoel sterk robuust genoemd al's het voldoet aan de volgende eigenschap: voor elke rij
systemen in deze verzameling stabiliseert de tijdvariérende regelaar gebaseerd op deze rij
systemen elk vast systeem in de verzameling. In onze context van adaptieve regeltechniek
is het zo dat a's de verzameling modellen sterk robuust is, dan bestaat de bijbehorende tijd-
variérende regel aar en deze stabiliseert het onbekende werkelijke systeem, onafhankelijk van
hoe het model wordt aangepast binnen deze verzameling en ongeacht de snelheid van de aan-
passing. Hierdoor worden regelbaarheid van het model en stabiliteit van het tijdvariérende
gesloten-lus systeem gegarandeerd. Eigenschappen die klassieke adaptieve regelmethoden
zonder verder modificaties vaak niet hebben.

Het uitwerken van bovenstaand idee vormt het hoofddoel van het onderzoek in dit proef-
schrift: het ontwerpen van een adaptieve regel procedure die gebruikt maakt van het concept
van sterke robuustheid. Om dit doel te bereiken is de structuur van het proefschrift drieledig.
Als een eerste stap wordt sterke robuustheid bestudeerd als een wiskundig concept (Hoofd-
stuk 3). In het bijzonder wordt aandacht besteed aan de geometrische eigenschappen van
verzamelingen van systemen die sterk robuust zijn. De gebruikte regeldoelen zijn voor-
namelijk poolplaatsing en lineair kwadratisch regelen. De bestudeerde systemen zijn lineaire
en tijdinvariante SISO-systemen in discrete tijd, met een onbekende-maar-begrensde mod-
elleerfout met bekende boven- en ondergrenzen en van een bekende orde. Een fundamenteel

133



134 SAMENVATTING

resultaat is het bestaan van niet-triviale sterk robuust omgevingen rondom elk systeem in
de beschouwde systeemklasse. Vervolgens worden voldoende voorwaarden afgeleid voor de
karakterisering van sterk robuuste verzamelingen van systemen. De gebruikte technieken zijn
o.a. lineaire matrix ongelijkheden en een Kharitonov achtige test.

De tweede stap in onze aanpak (Hoofdstuk 4) is het combineren van het concept van
sterke robuustheid met identificatie. Met betrekking daartoe wordt aandacht geschonken aan
de volgende vraag: hoe kan een sterk robuuste verzameling modellen verkregen worden in
het perspectief van identificatie ten behoeve van regelen? Om dit identificatievraagstuk op
te lossen, wordt een open-lus identificatie-ingang ontworpen en geimplementeerd, die garan-
deert dat de onzekerheidsverzameling sterk robuust wordt binnen een eindig aantal stappen.

De derde en laatste stap in onze aanpak is het modificeren van de klassieke adaptieve
regeltechniek gebruikmakende van het concept sterke robuustheid. Dit leidt tot wat genoend
zou kunnen worden sterk robuuste adapieve regel systemen (Hoofdstuk 5). In plaats van blind
het model te gebruiken om het regelontwerp te bereiken, zoas gebruikelijk isin klassieke
adaptieve regelmethodes, wordt nu op elk tijdstip van het ontwerp eerst gecontroleerd of de
verzameling van alle modelkandidaten sterk robuust is. Als eenmaal aan deze voorwaarde is
voldaan, wat gegarandeerd binnen eindige tijd gebeurt, gaat men verder met het regelen vol-
gens een klassieke zekerheids equivalente strategie. Het ontwikkel de adaptieve regel schema
kan dus opgesplitst worden in twee fasen. In de eerste fase ligt de nadruk grotendeels op
open lus identificatie van een sterk robuuste modelverzameling. Op elk tijdstip laat een cri-
terium zien of sterke robuustheid wel of niet bereikt is. Als aan dit criterium voldaan wordt,
schakelt de adaptieve regeling over naar de tweede fase, de regelfase, waarin de nadruk wordt
verschoven naar het regelen van het systeem. Door op deze manier verder te gaan, behoudt
men asymptotische stabiliteit van het gesloten-lus systeem, terwijl men er tegelijkertijd van
verzekerd isdat initiél e onzekerheid geen ongewenste overgangsverschijnselen zal opleveren.
De op sterke robuustheid gebaseerde adaptieve regelmethode wordt gepresenteerd in een al-
gemeen kader. Tendlotte wordt in het bijzonder aandacht besteed aan het geval van sterk
robuust pool plaatsingsontwerp, waarvan een gedetailleerde analyse is gemaakt en waarvoor
enkele implementatie-aspekten worden bekeken.



Resume

Cette dissertation traite du probleme souvent rencontré en commande adaptative de procédées
qu'est celui de la stabilité du systéme commandé en phase transitoire. Les méthodes clas-
siques de synthese de commandes adaptatives s'inspirent du Principe de I’ Equivalence Cer-
taine, basé sur lesidées suivantes. A chaque itération de la synthese du contrdleur, un modéle
du systeme a commander est estimé au moyen d’ une procédure d'identification. A partir de
ce modele, un contrdleur est synthétisé puis appliqué au systeme a commander, et cela sans
tenir compte des erreurs de modélisation. Tant que les performances du systeme controléainsi
constitué ne sont pas jugées satisfai santes, |’ al gorithme préceédemment décrit est re-itéré. Une
telle stratégie de synthese de commande s accompagne cependant de trois problemes. Tout
d’ abord, en raison des erreurs de modélisation, |e concepteur n’ aen aucun caslaguarantie que
le contrdleur appliqué stabilise a tout instant e systéme a commander, de sorte que peuvent
se produire des transitoires d’ amplitude dérai sonnable dans |e comportement entrée-sortie du
systeme de commande. Le second probléme vient du fait qu'il n'y a pas moyen de vérifier a
priori si le modéle est controlable. Si malheureusement il ne |’ est pas, auncun controleur ne
peut étre synthétisé a partir de ce modele, ce qui entraine une paralysie totale de |’ agorithme
de contrdle. De plus, méme dans le cas favorable ol le modele est controlable a chague in-
stant et donc possede une loi de commande qui stabilise e systeme a commander, la stabilité
du systeme peut &tre perdue si le modele varie trop rapidement.

Dans un premier temps, nous défininissons la notion de robustesse fortéstrong robustness)
qui joue un rdle fondamental dans notre travail. Un ensemble de systémes S est dit forte-
ment robustear rapport a un objectif de control fixé s il possede la propriété suivante: &tant
donnée une famille de sytemes appartenant a cet ensemble S, le contrdleur variable généré
par cette sequence de systémes stabilise tout autre systeme & ément de cet ensemble S. Dans
le contexte de controle adaptatif qui est le ndtre, sous |’ hypothése que I’ ensemble de modeles
que nous considérons est fortement robuste, alors nous avons le résultat suivant: ou que soit
choisi le modéle dans cet ensemble de systémes, et quelle que soit la vitesse avec laguelle
ce modéele est remplacg, le contrdleur variable qui lui correspond est défini a tout moment et
stabilise le systéme & commander. Par conséquent, la controlabilité du modéle et 1a stabilité
asymptotique du systéme de contrdle en boucle fermée sont guarantis, contrairement a ce que
nous pourrions obtenir en utilisant les méthodes classiques de commande adaptative.

Le but principal de cette these est de développer une procédure de contrdle adaptatif ex-
ploitant le concept de robustesse forte. Pour atteindre cet objectif, notre é&ude est menée
en trois temps. Tout d'abord, la notion de robustesse forte est &tudiée en tant que concept
mathématique (Chapitre 3). En particulier, nous nousintéressons aux propriétés geométriques
des ensembles de systemes fortement robustes, principalement dans un cadre de synthese
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de lois de commande avec placement de pdles ou de la méthode de commande linéaire
quadratique. Les systemes que nous considérons sont linéaires, invariants dans le temps,
mono-entrée mono-sortie (SISO), discrets et d’ ordre connu. L’erreur de modélisation est
quand a €lle supposée inconnue mais bornée, et possedant une borne supérieure et une borne
inférieure connues. Le résultat suivant est établi: autour de tout systeme dans la classe de
systémes étudiés, il existe un voisinage de systemes qui possede la propriété de robustesse
forte. Ensuite, des tests charactérisant les ensembles de systemes fortement robustes sont
exprimés au moyen d’ outils empruntés alathéorie de la commande de systemes, tels que des
inégalités matricielles linéaires et le test de Kharitonowv.

Ensuite, dans la deuxieme partie de notre approche (Chapitre 4), nous relions les concepts de
robustesseforte et d’ identification pour le contrdle adaptatif. Pour ce faire, nous nous posons
la question suivante: dans une perspective d'identification en vue d’ une synthese de lois de
commande, quel signal d’entrée utiliser afin d’ obtenir des ensembles de modeles fortement
robustes? En réponse a cette question, nous synthétisons et implémentons un signal d’ entrée
d'identification en boucle ouverte assurant que I’ensemble des moddles identifiés devient
fortement robuste en tempsfini.

Enfin, dans la troisieme partie de notre éude nous reconsidérons la stratégie classique de
synthese de lois de commandes adaptatives alalumiére de notre précédente &ude de lanotion
de robustess forte. Ceci nous conduit a un algorithme de synthese de systemes de controle
adaptatif incluant la propriété de robustesse forte (Chapitre 5). A chaque itération, au lieu
d' utiliser aveuglément le modéle pour la synthese du controleur comme le font les méthodes
usuelles de synthese de systémes de de contrdle adaptatif, nous vérifions tout d abord si
I’ensemble des modéles identifiés est fortement robuste. Une fois la condition de robustesse
forte remplie, ce qui est guaranti en temps fini, alors une approche basée sur le principe de
I’ équivalence certaine est alors employée. L' algorithme de synthese de lois de commandes
adaptatives faisant I’ objet de cette these s articule donc autour de deux phases. Tout au long
delapremiere phase, I’ effort est surtout mis dans |’ identification " off-line” d’ un ensemble de
modeles fortement robuste. A chaque instant, un test est utilisé pour savair si il y arobustesse
forte ou pas. Lorsque ce test est positif, le systéme adaptatif entre dans la seconde phase, ou
I effort est cette fois mis au service du contrdle selon le principe d’ équivalence certaine. De
cette facon, nous assurons la stabilité asymptotique du systeme commandg, tout en garantis-
sant que I’ incertitude sur le systeme a commander ne donne pas naissance a des transitoires
de trop grande amplitude.

Notre méthode de synthése de systemes de contrdl e adaptatif basée sur lanotion de robustesse
forte est présentée dans un contexte aussi genéral que possible. Ensuite, e cas de placement
de poles fait I’objet d’une &tude plus détaillée et nous permet de simuler certains de nos
résultats.



Acknowledgments

This PhD dissertation would not exist without the advice, the help and the support | received
from many people.

To start with, | would like to thank Dr. Tony Holohan, from the School of Engineering
at Dublin City University, for strongly encouraging me to undertake a PhD at the University
of Twente four years ago. Thanks to his motivating lectures and his committed supervision
during my master’sfinal project, my interest in systems and control was born.

Then, my deepest thanks go to my daily supervisor Jan Willem Polderman, for his trust
in my capabilities to complete the task from our very first phone interview until the end of
these four years. | express al my gratitude to him for his availability, his very valuable
guidance, his constant encouragements and the time he spent reading the different drafts of
thisthesiswith an unbeatable attention. Also, | really thank him for the freedom he gave meto
organize my working time and for having taken so good a care of my working environment on
many occasions. Not only did | learn alot of systems and control theory but | aso improved
my working methods in away that will always be useful for my future career. Duizendmaal
bedankt, Jan Willem.

Furthermore, | address my thanks to my promotor Prof. Arjan Van der Schaft for sup-
porting my participation in many events which considerably improved the development of
my work. As such, | am grateful to him for involving me in the Nonlinear Control Network
in June 2000. Most of all, | acknowledge his financial support during my visit in 2002 at the
University of Melbourne, Australia. Finaly, | thank him for the time he spent reading a draft
of thisthesis and for his very helpful comments on my work on various occasions.

Then, very special thanks go to Prof. Iven Mareels from the Department of Electrical
and Electronic Engineering at the University of Melbourne, whose support, in many ways,
has been fundamental to the accomplishment of my thesis. | am very much indebted to him
for all the precious time he spent reading some of my reports, for his constructive comments
and inspiring suggestions which have contributed in a large part to this thesis. In addition, |
would like to expressto him all my gratitude for having hosted me during my ten weeks visit
to hisresearch group at The University of Melbournein fall 2002, as well as his considerable
financial support. Not only was this visit an important turn in my Ph.D. in terms of the
results we achieved, but it was also a great privilege to discover part of beautiful Australia.
| also express my thanks to al the members of the Department of Electrical and Electronic
Engineering at the University of Melbourne whose kindness and welcome made my stay so
enjoyable.

Next, | would like to express my thanks to Prof. Frank Lewis from the Advanced
Controls & Sensors Group at the University of Texas at Arlington, USA, for having hosted

137



138 ACKNOWLEDGMENTS

me in summer 2001 in his research group. | am grateful to him for his interest in my work,
as well as the financia support he generously provided me with. By the same occasion my
thanks go to the members of Advanced Controls & Sensors Group for their kindness to me,
with a special mention to Mrs. Raynette Taylor who gave me so much of her valuable time
and help for administrative concerns.

| am grateful to all the members of my promotion committee: Prof. Job van Amerongen,
Prof. Arun Bagchi, Dr. Marco Campi, Prof. Michel Verhaegen and Dr. Siep Weiland for their
attentive reading of a draft of this thesis. Their comments have been extremely useful and
unveiled new aspects of thiswork in view of future research. Also, | am grateful to Dr. Siep
Weiland for the interest he showed in my work and his contagious enthusiasm. | particularly
thank him for the one-day meeting we had in Eindhoven in 2001 which turned out to be
very fruitful since it gave birth to an interesting piece of work we presented at the SYSID
Symposium 2003.

These four yearswould certainly not have been the same without all the friendly people
| have had the privilege to meet in Twente University. Before al, my warm thanks go to my
irreplaceabl e officemates, Alehandro and Vishy, for their never-ending good mood. | would
like to thank Hans Zwart and Jan Willem Polderman for kindly hosting me in their office
when space was hard to find for everybody in the department. My gratitude also goes to all
the Systems, Signals and Control staff members, all the SSC-PhD students as well as Dr. Jan
Schut, Dr. Aladin Al-Dhahir, Goran Golo and Jacolien Kuipers and all SSC-guests, for their
pleasant company. | acknowledge the precious help of Jacolien and Jan Willem in translating
the summary of this thesis to dutch and that of Hendra in fixing my english. Next, special
thanks go to Helen Strecker-Somberg, Carla Hassing, Marja Langkamp, Marjo Mulder and
Diana Daneloord not only for their competent help in many administrative matters but also
for their very friendly attitude. At last, | would like to acknowledge all the people whose
amazing work guaranteed good working conditions within the group at al times despite the
fire that destroyed our former building in November 2003.

Outside my working hours, | had the luck to meet very specia people with whom |
shared some important moments of my life. Above all, my thanks go to Vladimir for his
invaluable friendship, and also to my inseparable housemates, Irene and Lourdes, for their
caring presence. Many thanksto all my other friends met during my stay in The Netherlands,
with aspecial mention to Orest and Maria, Alberto, Marie-Christine, Fransesca, Marta, Olga,
Richard, Caroline, Fernando, Philippe and Sonia.

This thesis is the accomplishment of along educational journey through which | could
not have gone without my wonderful family. | could never thank my parents enough for their
support and guidelines throughout my studies. | see this work as the fruit of their education
and for thisreason it is dedicated to them.

Finaly, | reserve infinite thanks for my husband Gianluca. His absence for two years
and ahalf hasbeen ahigh priceto pay but, at the sametime, acatalyst for the accomplishment
of thisthesis. From the other side of the Atlantic, hislove and encouragements have certainly
been the most important ingredients of this achievement.

Enschede, September 2003
Maria Cadic in Boselli



About the author

Maria Cadic was born on December 21, 1975 in Toulouse, France. After graduating from
high schoal at the Lycée Pape 3ment Pessac, France, in 1994, she began to study Math-
ematics, Physics and Chemistry in the Classes Peparatoires aux Grandes Ecoleat the
Lycée Michel Montaigngin Bordeaux, France. In the meantime, she obtained her university
diploma Dipldme d’Etudes Universitaires&pgralesin Physics and Chemistry at the Univer-
sité des Sciences de Bordeauinldune 1995. In 1997, she joined the Engineering School
Institut des Sciences de la Maté et du Rayonnemer€aen, France, from which she ob-
tained her Engineering Diplomain Electronic Systemsin July 1999. During 1998/1999, she
also completed a Master of Engineering in Electronic Systems at the School of Electronic
Engineering a Dublin City University Ireland, for which she graduated in October 1999
with First Class Honour. Her master’s thesis, supervised by Dr. Tony Holohan, was entitled
" System I dentification for Control”.

In September 1999, she joined the Signals and Systems Control group at the University
of Twente The Netherlands, as a Ph.D. student.

139



