
STRONGLY ROBUST ADAPTIVE CONTROL:
THE STRONG ROBUSTNESS APPROACH



This dissertation has been completed in partial fulfilment of the requirement of the
Dutch Institute of Systems and Control (DISC) for graduate study.

Publisher:
Twente University Press,
P.O. Box 217, 7500 AE Enschede, The Netherlands
www.tup.utwente.nl

Cover design:
Photo taken by Maria Cadic
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Notation

N the natural numbers
Z the integers
R the real numbers
R+ the positive real numbers
C the complex numbers
K R or C

K
k×p the k × p matrices with entries in K

I the identity matrix with appropriate dimensions
Ip the identity matrix in K

p×p

K[ξ] the ring of polynomials in one indeterminate and coefficients in K

K
k×p[ξ] k × p polynomials matrices with entries in K[ξ]
|a| the 2-norm of the complex number a ∈ K

||V || the Euclidean norm of the vector V ∈ K
k

||M || the Frobenius norm of the matrixM ∈ K
k×p

Pn the class of single-input/single-output (SISO) systems of order n
Cn the class of controllable systems in Pn

Sn the class of asymptotically stable systems in Pn

f the map assigning to each system θ ∈ Cn its controller
f(θ) the controller based on the system θ ∈ Cn
f(Ω) the set of controllers based on systems in Ω ⊂ Cn
(θ, f(θ′)) the feedback interconnection of the system θ ∈ Cn and the controller f(θ′) ∈ f(Cn)
χθ,f(θ′))(ξ) the characteristic polynomial of (θ, f(θ′)) for systems θ, θ′ ∈ Cn
rK(A,D,E) the structured stability radius of the Schur matrix A ∈ K

n×n, with respect to
perturbations in K

l×q with the structure (D,E) ∈ K
n×l ×K

q×n

ρSR(θ) the strong robustness radius around a system θ ∈ Cn
ρSQR(θ) the strong quadratic robustness radius around a system θ ∈ Cn
ρTISR(θ) the time-invariant strong robustness radius around a system θ ∈ Cn
r(Ω) the radius of a ball of systems in Pn

∼ permutation operator on rows and columns of a matrix

v





Chapter 1

Introduction

The concept of adaptive control, emerged in the mid-fifties, contributed to an immense body
of literature and led to many practical applications. So why the need to introduce one more
approach? What is the notion of Strong Robustness announced in the title of this thesis
and why is it needed for? Our aim in this chapter is to answer these questions so as to
motivate the whole thesis, as well as provide an overview of the relevant literature. In Section
1.1, we present the concept of adaptive control, paying particular attention to one of its
main paradigms: the certainty equivalence principle. Although this principle is at the origin
of most of adaptive control design strategies, it has three well-known disadvantages. After
drawing the attention to these three drawbacks, we then speculate about what should be
modified in classical adaptive control methods so that the three presented drawbacks vanish.
This leads to the notion of Strong Robustness that will be defined and motivated in Section
1.2. Finally, Section 1.3 outlines the structure of the thesis.

1.1 Adaptive control

A very natural start to this thesis would be to define the concept of Adaptive Control. Yet,
despite the fifty years of history of this field, one still did not succeed in agreeing on a general
definition, mainly because it is not clear how to draw a sharp bound between adaptive control
and other control approaches such as robust control. As a first attempt to such a definition,
an adaptive control system is viewed in [7] as a control system that has been designed with
an adaptive viewpoint. Here, adaptivecharacterizes a controller that can modify its behavior
in response to ’large’ changes in the dynamics of the process to be controlled and the distur-
bances corrupting this process, where ’large’ means that a single (simple) controller would
not be able to cope with such changes[72]. Alternatively, adaptive control can be seen as the
control of a partially unknown system [46], [72], [95]. We adopt this second point of view
all along this thesis, leaving the notion of partially unknown system unspecified for the time
being.
At first sight, these definitions for adaptive control may leave the impression that an adap-
tive control system should be able to behave exactly like the non-adaptive control system,
obtained when the dynamics of the process to be controlled and the disturbances are not sub-
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2 1.1. ADAPTIVE CONTROL

ject to any changes, alternatively when the process to be controlled is completely known.
Although achieving such a situation would be ideal, it is clear that the more the process dy-
namics and the disturbances are corrupted by perturbations, the less we can a priori expect to
achieve in terms of control. In other words, the less knowledge we have on this process, the
harder it is to control this system. Hence, such ideal goal had to be replaced by a milder one:
one ought to construct a control system showing ’reasonably good’ performance in spite of
uncertainty on the true system. Here, ’reasonably good performance’ certainly includes that
once the control design is achieved, the performance of the actual controlled system should
be close to specified desired performance. However, it is also crucial that at any timeof the
design, the control system is defined and stable, in a sense that will be defined later in this
work. Already, many questions arise: how to practically design a controller so that the per-
formance of the unknown system converges to the desired performance, despite initial lack of
knowledge? If such a controller exists, beyond the guarantee of a nice asymptotic behavior,
can it also ensure that the control system shows an acceptable behavior at any time? If not,
what would be the ideal situation providing that at no time of the design bad behaviors are
avoided? Each of these three questions are now examined in the following subsections.

1.1.1 The certainty equivalence principle

Intuitively, the better the system to be controlled is known, the better a controller designed
on a guess of this plant may be expected to perform when applied to this real plant. Another
intuitive idea is that for the previous idea to be true, the uncertainty on the true system must
be sufficiently small. As we shall see later in Section 1.1.2: indeed, given two large uncer-
tainty levels, there is no real guarantee that the guess on the system to be controlled obtained
for the lower of these two large uncertainty levels will be better than the guess obtained for
the higher uncertainty level.
Nevertheless, the idea consisting in relying on a guess of the system to be controlled to per-
form its control is known as the Certainty Equivalence Principleand is the cement of a wide
spectrum of classical adaptive control approaches [7], [14], [72]. At each time of the design,
based on the available knowledge on the true plant and on a selection law, one constructs an
approximation of this true plant, the model, also called estimate. This constitutes the iden-
tification step. Then, the identified model is used for on-line controller design without any
regards for errors between this model and the true system which generated the data. Further,
one applies the model-based controller to the real system and compare the performance of the
resulting closed-loop system with the desired control performance. If the performance mis-
match is not small enough, one then constructs the new model on the basis of the previous
estimate and the new data measurement, subsequently re-tune the model-based controller,
until the closed-loop performance is close enough to the desired one. It is clear that the task
targeted during such a strategy is to obtain a good controller. Since the controller is based
on an estimate of the plant, one way to obtain a controller that becomes good enough is
to decrease the model error. At the limit, the model would then converge to the real sys-
tem parameter and hence the model-based controller would approach the controller designed
on the basis of the true system. However, the certainty equivalence controller ignores the
plant/model mismatch and adapts its control action so as to meet the control objective for
the estimated system. Hence there is nor the guarantee neither a real probing of the system
to decrease the uncertainty. This issue, called the identifiability problem in adaptive control,
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has been extensively studied in the system identification literature [91], [95]: due to lack of
internal excitation, the control law applied in closed-loop may make some of the unknown
system parameters invisible to the identification process. In turn, the identifiability problem
may result in control performances degradation [18], [43], [103], [90]. Ionnaou1 In this re-
spect, a major result is that the input, in order to yield a sequence of models leading to a
good control asymptotically, must be sufficiently exciting [43], [72], [18]. In addition, for
stochastic systems, it has been proved that in minimum variance adaptive control, despite the
fact that the estimate normally converges to a model that is different from the real parameter,
the model-based controller asymptotically equals the controller we would obtain when using
the exact system parameter [95], [97]. Moreover, it has been established that in the case of
adaptive pole assignment, the information one may obtain from the closed-loop behavior of
the system is sufficient to generate the proper sequence of control inputs [72],[91]. Hence,
in that case, even if the plant parameters are not exactly identified, the generated control law
asymptotically equals the control law we would have obtained on the basis of the complete
knowledge of the system. In this thesis, the identifiability issue will not be further discussed.
We will mainly focus on the case of adaptive pole placement design.

1.1.2 Three issues in certainty equivalence adaptive control

As discussed in the previous subsection, certainty equivalence is key in most adaptive control
designs. We saw that under some conditions, which will be assumed to be satisfied throughout
this thesis, the use of this paradigm yields a controller that asymptotically generates the proper
control input sequence, i.e., the control input sequence we would obtain when designing it
on the basis of the true system to be controlled. This is due to the fact that with time, the
uncertainty on the true system becomes small enough to yield a model sequence resulting in
a good design. To be more specific, asymptotically, the time-varying model is controllable
(hence, at least stabilizable). Moreover the fixed controller based on the frozen model at each
time stabilizes the true plant asymptotically. However, when little information is available
on the real system, as it is common to be in the initial phase of an adaptive control design,
it is likely that the model is poor from a control point of view. Hence controllability of the
model and stabilizability of the model-based controller may not apply. This may cause severe
problems when using classical adaptive control design.

Pole-zero cancellation problem in adaptive control

As it turns out to be often the case in the initial phase of an adaptive control design, we
have very little prior knowledge on the level of controllability of the system to be controlled,
that is, the distance from this system to the set of uncontrollable systems. Hence, the model
provided by the update law that is defined by the adaptive control algorithm might be not
controllable. However guaranteeing the controllability of the estimated system is crucial,
since otherwise global stability of the adaptive scheme might be completely disrupted. As a
matter of fact, to apply many well-established stability and performance results, one has to
suppose that the estimated model satisfies a uniform controllability assumption ([31], [99],
[101]). On the other hand, classical identification approaches ([35], [64], [72], [87]) do not
guarantee such a controllability property in the absence of suitable excitation conditions,
which is often the case in closed-loop identification. This issue, known as the pole-zero
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cancellation problem in adaptive control, attracted significant attention in the literature, in
stochastic and deterministic settings. In a stochastic setting, a first way to view this problem
relies on the property that the sets of parameters corresponding to non-controllable models is
a proper algebraic variety. Hence the event of getting such a model during the finite time of
the identification process has probability zero [75], i.e., will never occur in practice. This is to
some extent true, however, ignoring the problem is unsatisfactory. Moreover, the probability
of getting an uncontrollable model can become positive in the limit and, to the best of our
knowledge, no result exists to indicate for which control laws this may occur.
A large body of the literature in adaptive control analysis deals with the pole/zero cancellation
problem in adaptive control. Some of the main approaches to face this problem are now listed,
without any claim of completeness.

• A first class of approaches consists of the a-posteriori modification of the estimate,
e.g., the least squares estimate, so that it stays in or converges to a set of controllable
systems ([30], [43], [68], [69], [92], [112]). This can be done by using properties
of its covariance matrix ([68], [69], [92]) or by projecting the estimate on a set of
controllable systems whilst assuring that the modified estimate inherits some useful
properties of the original estimate ([30], [43], [112]). In this manner, before using the
estimate for the control design, controllability of the model is secured. However, the
main drawback of this approach is its computational complexity which tremendously
increases with the order of the system to be controlled [69].

• A second family of approaches amounts in modifying the identification algorithm so
as to force the estimate to belong to an a priori known set of controllable models
containing the true parameters ([61], [62], [76], [87], [96]). The requirement of the
knowledge of a set of controllable systems containing the true unknown system is
however a significant limitation of such approaches, confining their use to the cases
where the parameter uncertainty is highly structured.

• A third body of approaches ([21], [82], [94]) results in keeping the system estimates
away from the uncontrollable models through application of exciting signals amongst
three types of signals: persistent, asymptotically vanishing or sporadically appearing
when necessary. Again, these approaches become computationally expensive as the
system order increases.

• Finally, worth to be mentioned are alternative approaches in which other methods than
the classical certainty equivalence strategy are used to design the controller. Such an
approach, presented in [89], is a cyclic switching control strategy, steering periodi-
cally the unknown system according to a specified logic. Another approach [6] lies in
alternative parameterizations of the system to be controlled such that the problem of
avoiding non-controllability is avoided or non-existent.

These reported methods offer a clear analysis of the unavoidability of the pole-zero cancel-
lation problem in adaptive control and propose various solutions to face this problem. Their
main drawback, however, remain in their computational cost or the assumption that the sys-
tem to be controlled belongs to a known convex set of controllable systems.
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Non-stabilizing model-based controller

If the uncertainty on the system to be controlled is too large, there is a priori no reason to
expect that a model of the system will lead to a controller stabilizing the true unknown plant.
The well-documented possibility of this event is shown in the adaptive closed loop behavior
through unacceptable transients ([4], [7]). An example of such a behavior in the case of
pole placement of first order systems is postponed to Section 5.5.2 in Chapter 5. In that
example, we show that for any arbitrarily chosen integer N , and for any desired stable pole
α, and for any initial conditions of the system, there exists an initial guess θ̂(0) on the real
unknown parameter vector θ0 such that classical adaptive pole placement in α as cited in
[72] yields at least N consecutive model-based controllers that are arbitrarily destabilizing
the real system. From a practical point of view, a good or bad transient behavior of a control
system might be the criterion deciding on the quality of the controller, hence it is crucial
to prevent bad transients to occur. This is the reason why the idea of combining classical
adaptive control and robust control design appeared ([46],[54], [61], [83], [115]). Rather than
designing the controller on the basis of the model irrespective of the model/plant mismatch as
it is done in standard certainty equivalence control strategy, one designs a robustcontroller,
i.e., a controller that stabilizes any frozen plant in the uncertainty set. However, as it is
shown in [46], the requirements of robustness and adaptation often conflict in an adaptive
control framework. Therefore, the design of dual controllers, optimal from both estimation
and control points of view appears very difficult.

Time-varying model

In an adaptive control design, the model is updated at each iteration. Hence the model-based
controller is time-varying, and these time-variations are necessary since they are the key to
hopefully further improve the controller performance. Now, let us suppose that the uncer-
tainty on the system to be controlled is initially small - even if this cannot be verified a priori
- so that the chosen model at each iteration is controllable and leads to a controller that sta-
bilizes the unknown plant, this at any frozen time of the design. Even in this ’ideal’ case, it
is well known that the time-varying closed-loop system might not be asymptotically stable
if the time variations are too fast [56], [7], [4]. Therefore, loss of asymptotic stability of
closed-loop control systems based on the certainty equivalence approach may be induced by
the inherent adaptation process they involve. To prevent this phenomenon to occur, the adap-
tation process should be slow enough to guarantee that the closed-loop system stays within
some time-varying stability bounds. Such stability bounds are related to the notion of com-
plex structured stability radius [51]. If the model is chosen so that the Euclidean distance
between the certainty equivalence controller and the controller we would obtain on the basis
of the unknown system is smaller than the complex structured stability radius of this unknown
plant, then time-variations of the model will not affect stability of the closed-loop adaptive
system [51], [52]. However, since the system is unknown it is not possible in practice to com-
pute a priori its complex structured stability radius. An interesting approach guaranteeing that
the time variations will not destroy the stability of the adaptive scheme is found in [32]: in a
switching control system, the switching rate is slowed down so as to avoid switching too fast
with respect to the system’s settling time, hence destabilizing. This is achieved by adopting a
so called dwell-time switching logic[48], where a dwell-time is forced between consecutive
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switching instants. Moreover, this dwell-time is adaptively selected on the basis of available
data measurement. According to the results of [49], global stability is secured provided that
the switching is sufficiently slow on average. In these reported approaches, this interesting
concept of dwell-time has been developed for hybrid control systems: the controller parame-
ters are updated when a new estimate of the process parameters becomes available, similarly
to the certainty equivalence adaptive control paradigm, but these events occur at discrete in-
stants of time. Moreover, in these approaches, the set of candidate controllers is supposed to
be finite and parameterized in a discrete fashion. However, it is not clear how to apply such
idea to the case where the controller is continuously parameterized and therefore we will not
adopt this approach in the remainder of this thesis.

1.2 The essence of strong robustness

It appears from our discussion in Section 1.1 that classical adaptive control suffers from three
drawbacks. An initial insufficient knowledge on the system to control may result in the selec-
tion of an uncontrollable model, leading to a paralysis of the control system. Or, the model
could lead to a controller that does not stabilize the true plant, in which case undesirable
transients may be induced in the closed-loop system behavior. Finally, the time-variations of
the model-based controller might destroy the asymptotic stability of the control system. This
discussion immediately leads to the following question: how should classical adaptive con-
trol schemes be modified so that these three undesirable phenomena are avoided? To the best
of our knowledge, each of the three problems discussed in Section 1.1.2 is in itself compli-
cated and so are the corresponding solutions that have been reported in the literature. Hence
a direct modification of the estimates obtained by using classical algorithms, combining the
various solutions proposed in the literature to these three fundamental problems, so that they
meet the three critical properties during adaptation might be a formidable task, and we do not
adopt such approach. Instead, our objective is to come up with a different approach, which
seeks to overcome the above difficulties, while retaining the advantages and the fundamental
ideas on which classical adaptive control is based.

Our idea is as follows. Until the danger of meeting the three problems mentioned above
exists, the algorithm would focus on gathering information on the unknown system. Then,
when enough information is obtained to guarantee that this danger is avoided, classical adap-
tive control would be applied. In this line of thought, we ask ourselves the following ques-
tion. What property should the set of all possible models have so that the three previous
undesirable situations cannot occur at any time when performing adaptive control? Clearly, it
follows from our previous discussion that the minimum property required during adaptation
is the following: the models should keep controllability. Moreover, at each time, the frozen
model-based controller should stabilize the real system to be controlled. Finally, adaptation
should be slow enough to secure global stability of the adaptive scheme. However, the real
system is unknown hence it is a priori not possible to check whether at each time instant the
model-based controller stabilizes the true plant. Instead, assuming that at each time an uncer-
tainty level on the system is given, what may be checked is whether at each time instant the
model-based controller stabilizes any other model in the uncertainty set. In that respect, our
approach is somehow connected to the concept of robust adaptive controlproposed in [54],
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[55], [46]. Because the true system is unknown, how slow adaptation should remain cannot
be specified a priori since it depends on the unknown system to be controlled. However, what
may be checked is whether the time-varying closed-loop system formed with any system in
the uncertainty set and any sequence of controllers in the set of controllers associated to the
model class stays stable. When the uncertainty set only contains controllable systems and
has this property, we call it strongly robust[25], [29]. The combination of identification of
a strongly robust uncertainty set and adaptive control design will be called strongly robust
adaptive controland is our main concern throughout this thesis. As we shall see in Chapter
5 into details, this approach splits in two phases. In the first phase, because no conclusion
can be drawn on strong robustness of the uncertainty set, focus is on identification of the
model set, in such a way that it will surely become strongly robust. Once strong robustness is
achieved, the system switches to the second phase where a classical control design approach
based on certainty equivalence is applied. The main philosophy behind our approach may be
thus summarized as follows:

”Do not start control before you are sure that the control action will not deteriorate the sys-
tem performance”.

This idea may be not too far from real life, since we all might have experienced one day a
situation where a wrong guess on a system may make us act in a way that contradicts with
what we actually want to do.
Now, the notion of strong robustness being introduced and motivated in an adaptive control
framework, many questions arise. To begin with, do strongly robust sets of systems exist?
A negative answer to this answer would not allow us to go further. If existence of strongly
robust sets of systems exist, how to design an identification input yielding a strongly robust
uncertainty set in practice? Back to an adaptive control framework, the strongly robust adap-
tive scheme should decide whether effort has to be put on identification or control on the
basis of strong robustness of the uncertainty set. How to construct a criterion to indicate
when the strong robustness property is reached? These are the main issues that will guide us
throughout this thesis.

1.3 Thesis outline

We now briefly describe the content of each chapter of the thesis. After presenting the math-
ematical framework of our work in Chapter 2, Chapter 3 deals with the notion of strong
robustness as a mathematical object. Further in Chapter 4, an identification problem is ex-
amined in a general context. Next, Chapter 5 exploits the results of the previous chapters
to develop a general algorithm for strongly robust adaptive control. Finally, in Chapter 7,
conclusions and recommendation for further research are given.

Chapter 2 - Mathematical framework

The mathematical ingredients used in this thesis and our working assumptions are presented.
In particular the class of systems and the class of the control objectives that we consider
are defined. In addition, we discuss two issues on parameter estimation: set-membership



8 1.3. THESIS OUTLINE

identification and orthogonal projection. These two well-known notions will be exploited in
Chapter 5.

Chapter 3 - Strong robustness and related notions

The notion of strong robustness is studied as a mathematical property of sets of systems
in the class of systems defined in Chapter 2. Various notions such as strong robustness,
time-invariant strong robustness, strong quadratic robustness and weak strong robustness are
defined and illustrated by simple examples. Further, we investigate the following question:
given a set of systems in the class of systems defined in Chapter 1, what conditions this
set must satisfy to enjoy the above strong robustness properties? Such conditions can be
expressed in a form that involves the complex and real structured stability radii for Schur
matrices introduced in [51]. Next, using our previous discussion, we show that around any
system in the class of systems defined in Chapter 2, there exists an open strongly robust
neighborhood of this set which is a subset of controllable systems. Afterwards, we focus on
the following problem: given a set of systems in our class of systems, how can we practically
test whether this set is strongly robust or not? Finally, the last section is devoted to the notion
of weak strong robustness and we show how this notion may be used in an adaptive control
framework.
Chapter 3 is based on [25], [29], [26].

Chapter 4 - Set-membership identification for control

An identification input is designed with the objective to yield a bounded uncertainty set with
decreasing size, in the framework of set-membership identification for strongly robust adap-
tive control. The aim is to identify an uncertainty set which becomes strongly robust in finite
time. The key idea is to consider a 2n-periodic input sequence, and find sufficient conditions
on the 2n design parameters so that the uncertainty set is bounded. Then, conditions for a
decreasing size of the uncertainty set are established. Combining these two sets of conditions,
we then explicit the identification input sequence providing a strongly robust uncertainty set.
In this chapter, the approach is as follows. The input-output signals are decomposed along
two components: the signals we would obtain if they were 2n-periodic (the steady-state case),
and the signals resulting from non-steady state initial conditions and from the modeling error.
The input design is then illustrated by means of two simple examples.
Chapter 4 is based on [28].

Chapter 5 - Strongly robust adaptive control

Exploiting the results established in Chapter 3 and Chapter 4, a strongly robust adaptive
control system is constructed. This adaptive scheme splits in two phases, the identification
phase, where off-line identification is carried on according to the design proposed in Chapter
4, and the control phase, where a certainty equivalence-based strategy is adopted. The switch
from the first to the second phase is orchestrated by the strong robustness criterion developed
in Chapter 3: as long as no conclusion can be drawn on strong robustness of the uncertainty
set, effort is on identification. Once strong robustness is achieved, then control starts. After
describing the general scheme of strongly robust adaptive control, analysis of the algorithm
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is provided. Then attention is paid on pole placement design. Strongly robust adaptive pole
placement is analyzed in details, and illustrated by means of a simulation example.
Chapter 5 is based on [27].

Chapter 6 - Conclusions and further research

Conclusions on our approach are given, with a particular attention to its effectiveness but also
limitations. The working assumptions made throughout this work are discussed so as to see
if after further investigation they could be relaxed or if they are fundamental to guarantee the
presented results. Finally, recommendations of the author for further research are given.
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Chapter 2

Mathematical framework

This chapter presents the mathematical ingredients used in the remainder of this thesis. Since
our ultimate goal is to develop a control strategy, we first define the class of systems to which
our discussion will apply, as well as the class of control objectives we will consider. Further,
we introduce a central notion in system identification theory that will be of great relevance in
the further chapters of this thesis: set-membership identification.

2.1 Class of objects

The complexity of most of the systems around us defies all attempts to obtain what we would
call ”an exact model” of these systems. In addition, while learning about the real system,
there are probably some discrepancies between the information to be known and the actual
measured information, known as measurement errors. Hence, in many applications, one
adopts a trade-off between optimality and complexity of the estimated system: one is satis-
fied with an approximate description of the system, provided that it adequately describes the
features of the system one is interested in. This approximation defines the model.
Now, to search for an approximate description of a completely unknown system does not
make sense, and it is reasonable to assume that the designer has some a-priori information on
this system. Such information are usually of two kinds: the model structure and a measure of
the discrepancy between this estimated structure and the actual one, the uncertainty.
Formally, in a large body of literature devoted to system theory, it is assumed that the dynam-
ical system we are interested in is described in discrete-time by an equation of the form:

y(k) = Ψk−1(θ0) + δ(k), (2.1)

where k is the discretized present time, θ0 denotes the unknown true parameter vector, y(k)
represents the available actual data measurement at time k, Ψk−1 is a known operator indi-
cating how the present measurement depends on θ0 and the previous measurements, and δ(k)
accounts for the uncertainty affected the true system, due to modeling error and measurement
error. The system without uncertainty (i.e., δ(k) = 0, ∀k) and with an estimated parameter
vector (i.e., θ0 replaced by the model parameter vector θ) is what we call the model.

11
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2.1.1 Models and their representations

In this thesis, it is assumed that in the case where the system we are interested in would not
be affected by uncertainty (i.e., δ(k) = 0, ∀k in (2.1)), the data measurements would be
generated by a discrete-time linear and time invariant SISO system of order n. Hence, the
operator Ψk−1 in (2.1) is a linear operator. We define the class of models as follows.

Definition 2.1.1 (Models) Pn denotes the set of linear time-invariant systems of ordern
described in discrete time by the equation:

y(k + 1) = θTφ(k), ∀k, (2.2)

whereφ(k) represents the regressor vector given by

φ(k) = (−y(k), · · · ,−y(k − n+ 1), u(k), · · · , u(k − n+ 1))T ∈ R
2n, (2.3)

denoting byu, y the input and output sequences respectively, and where

θ = (an−1, · · · , a0, bn−1, · · · , b0)T ∈ R
2n (2.4)

denotes the parameter vector.

Notation 2.1.2 To keep the notation simple, any model inPn described by (2.2) is associated
with its parameter vector θ defined in (2.4). In the sequel ” θ ∈ Pn” should be read as ” the
system in Pn parameterized by θ according to (2.2), (2.3), (2.4)”.

Now, the description of models in Pn is not unique and we will use different representations.
In particular, any model in Pn described by (2.2), (2.3), (2.4) has an equivalent description in
term of input/output difference equation[93] defined as follows.

Definition 2.1.3 (Models in input/output description) Consider the system defined by(2.2),
(2.3), (2.4). This system is completely defined by its input/output difference equation:

Aθ(σ)y = Bθ(σ)u, (2.5)

whereσ denotes the shift operator:σw(k) := w(k + 1) and the polynomialsAθ ∈ R
n[ξ]

andBθ ∈ R
n−1[ξ] are given by

Aθ(ξ) = ξn + an−1ξn−1 + · · ·+ a0 (2.6)

Bθ(ξ) = bn−1ξn−1 + · · ·+ b0.

Any model in Pn described by (2.2), (2.3), (2.4) has an equivalent input/state/output descrip-
tion [93] defined as follows.

Definition 2.1.4 (Models in input/state/output description) Consider the system defined by
(2.2), (2.3), (2.4). This system is completely defined by its input/state/output description
(A(θ), B(θ), C) defined as follows:

x(k + 1) = A(θ)x(k) +B(θ)u(k) (2.7)

y(k) = Cx(k),
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whereA(θ) ∈ R
2n−1×2n−1,B(θ) ∈ R

2n−1 andC ∈ R
1×(2n−1) are given by

A(θ) =




−an−1 · · · · · · −a1 −a0 bn−2 · · · · · · b1 b0
1 0 · · · 0 0 0 · · · · · · 0 0

0
. ..

...
...

...
...

...
...

. . . 0
...

...
...

...
... 1

...
...

...
...

0 · · · · · · 0 0 0 · · · · · · 0 0
... 0

... 1
...

...
...

...
... 0

.. .
...

...
...

...
...

...
. . . 0

...
0 · · · · · · 0 0 0 · · · · · · 1 0




(2.8)

B(θ) =
[
bn−1 0 · · · 0 1 0 · · · · · · 0

]T
(2.9)

C =
[
1 0 · · · · · · 0

]
, (2.10)

and the non-minimal state vectorx ∈ R
2n−1 is given by

x(k) =
[
y(k) · · · y(k − n+ 1) u(k − 1) · · · u(k − n+ 1)

]T
(2.11)

In our work, controllable systems in Pn and asymptotically stable systems in Pn will play a
fundamental role. We now introduce the two induced subsets in Pn.

Definition 2.1.5 (Controllable models and asymptotically stable models) The set of con-
trollable systems inPn is denoted byCn and the set of asymptotically stable systems inPn

is denoted bySn. Controllability here refers to the case where no pole/zero cancellation
phenomenon can occur.

We have the following [93]:

Theorem 2.1.6 (Controllability) Using the notation introduced in Definition 2.1.3 and Def-
inition 2.1.4 , the following statements are equivalent:

1. The system defined by(2.2), (2.3), (2.4) is controllable.

2. rank[λI −A(θ) B(θ)] = 2n− 1, for all λ ∈ C.

3. rank[B(θ) A(θ)B(θ) · · · (A(θ))2n−2B(θ)] = 2n− 1.

4. gcd(Aθ(ξ),Bθ(ξ)) = 1.

Similarly, we have the following stability characterization [93]:

Theorem 2.1.7 (Asymptotic stability) Using the notation introduced in Definition 2.1.3 and
Definition 2.1.4 , the following statements are equivalent:

1. The system defined by(2.2), (2.3), (2.4) is asymptotically stable.
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2. A(θ) is strictly Schur stable, i.e.,det(λI −A(θ)) = 0, λ ∈ C⇒ |λ| < 1.

3. All the roots ofAθ(ξ) are inside the open unit disc, i.e.,Aθ(λ) = 0, λ ∈ C⇒ |λ| < 1.

Notation 2.1.8 In accordance with Notation 2.1.2, we will use the notation θ ∈ Cn (respec-
tively θ ∈ Sn) to refer to the system defined by (2.2), (2.3), (2.4) under the assumption that it
is controllable (respectively asymptotically stable).

2.1.2 Actual system

We now describe the complete true system to be controlled, relaxing the assumption that the
uncertainty δ in (2.1) is zero.

Definition 2.1.9 (Actual system) We assume that the system we are interested in, from which
the input-output measurements are obtained, is described by:

y(k + 1) = (θ0)Tφ(k) + δ(k), ∀k, (2.12)

where for allk, y(k) is the actual measured output at timek, θ0 ∈ Cn ∩ Sn is the unknown
system model of the form(2.4), φ is the regressor vector given in(2.3) composed of known
actual measurement input-output datau(i), y(i),i ≤ k andδ(k) is the uncertainty at timek.

In this thesis, we will make the following assumption on the uncertainty sequence δ.

Assumption 2.1.10 (Unknown-but-bounded uncertainty) The uncertainty sequenceδ in
(2.12) is unknown-but-bounded with a known bound, i.e., there exist two real constantsδ, δ
such thatδ ≤ δ andδ ≤ δ(k) ≤ δ, ∀k.

Remark 2.1.11 Assumption 2.1.10 is often simplified in the literature by taking |δ(k)| ≤ δ1,
∀k, where δ1 = max{|δ|, |δ|}, which only increases the conservatism of the upper and lower
bounds on δ.

Remark 2.1.12 In the description (2.12), the true parameter vector θ0 corresponds to a sys-
tem in Pn which is controllable and asymptotically stable. The motivation of these two as-
sumptions, as well as the motivation of Assumption 2.1.10 on the structure of the uncertainty,
are postponed to Chapter 5 (see Remark 5.2.4).

2.1.3 Controllers

In this thesis the main goal is to discuss a control problem, and therefore the class of con-
trollers we are going to consider is one of the central notions in our work. The notion of
control objectiveis taken in its wide sense, that is to improve performance of the consid-
ered system (2.12), in a way that is left unspecified for the moment. However, we make the
following assumption.

Assumption 2.1.13 (Controllers) There exists a single-valued continuous map

f : θ ∈ Cn �−→ f(θ) ∈ R
1×(2n−1) (2.13)
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that assigns any model inCn defined by (2.2), (2.3) and (2.4) with its controller
f(θ) ∈ R

1×(2n−1) leading to the control law

u(k) = f(θ)x(k),∀k, (2.14)

wherex is the state vector defined in(2.7), such that the closed-loop system defined by

x(k + 1) = (A(θ) +B(θ)f(θ))x(k) (2.15)

y(k) = Cx(k)

is asymptotically stable, i.e., the dynamic matrixA(θ) +B(θ)f(θ) is strictly Schur stable.

Remark 2.1.14 The assumption that the map f is continuous is motivated later in this thesis
(see Chapter 3, Theorem 3.2.12).

More specifically, pole placement in stable poles and linear quadratic control will be the con-
trol objectives that will be mainly considered. For this reason, we now give a brief overview
of these two control design approaches and show that both satisfy Assumption 2.1.13.

Pole placement in stable poles

Consider θ ∈ Cn as the system to be control. The problem of pole placement in some stable
poles consists of designing an input law of the type (2.14) such that the poles of the resulting
closed-loop system (2.15) (the eigenvalues of the matrixA(θ)+B(θ)f(θ)), are located in the
roots of a pre-specified strictly Schur-stable desired closed-loop characteristic polynomialof
the form:

Π(ξ) =
2n−1∏
i=1

(ξ − αi), (2.16)

with
|αi| < 1, ∀i = 1, · · · , 2n− 1. (2.17)

For a given system defined by (2.2), (2.3) and (2.4) such that θ ∈ Cn, this control objective is
achieved by a unique controller f(θ) given by [93]:

u(k) = F (A(θ), B(θ))x(k),∀k, (2.18)

where x(k) is given in (2.7), A(θ) and B(θ) are given in (2.9), (2.10) and

F : {(A,B) ∈ R
(2n−1)×(2n−1)×R

(2n−1)×1 : (A,B) is controllable } → R
1×2n−1 (2.19)

is defined by Ackermann’s Formula [72]:

F (A,B) = −[0 · · · 0 1][B AB · · · A2n−2B]Π(A), (2.20)

where Π is the desired closed-loop polynomial defined in (2.16). The closed loop system is
hence defined by:

x(k + 1) = (A(θ) +B(θ)F (A(θ), B(θ)))x(k) (2.21)

y(k) = Cx(k),
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having its poles exactly in the desired poles αi, i = 1, · · · , 2n − 1. Hence it follows from
(2.17) that the closed-loop system (2.21) is asymptotically stable. Finally, it follows from the
expression (2.20) that the map f : Cn → R

1×(2n−1) assigning to the system parameter θ the
control gain f(θ) = F (A(θ), B(θ)) is continuous. Therefore, the problem of pole placement
in stable poles defined by (2.16) and (2.17) satisfies Assumption 2.1.13.

Linear quadratic control

Consider θ ∈ Cn as the system to be controlled. The Linear Quadratic Control problem ap-
plied to the system (2.7) consists of designing an input law of the type (2.14) which minimizes
the performance index:

J(u, x(0)) =
∞∑

k=0

(x(k))TCTCx(k) + ρ(u(k))2, (2.22)

where x(k) is given in (2.11), C ∈ R
1×(2n−1) is given in (2.10) and ρ > 0 is fixed by the

designer. The solution of this problem is unique and given by [7]:

u(k) = f(θ)x(k),∀k, (2.23)

where f(θ) is given by

f(θ) = −1
ρ
(B(θ))TP (θ), (2.24)

where P (θ) = (P (θ))T ≥ 0 is the unique positive semi-definite solution in R
(2n−1)×(2n−1)

solution of the algebraic Riccati equation:

(A(θ))TP (θ) + P (θ)A(θ) + CTC − 1
ρ
P (θ)B(θ)(B(θ))TP (θ) = 0, (2.25)

with A(θ) and B(θ) as defined in (2.9) and (2.10) respectively. Moreover, the closed system
(2.15) is asymptotically stable, i.e., the eigenvalues of the matrixA(θ)− 1

ρB(θ)(B(θ))
TP (θ)

are in the interior of the unit disc. It follows from (2.24), (2.25) that the map f : Cn →
R
1×(2n−1) assigning to the system parameter θ the control gain f(θ) = − 1

ρ (B(θ))
TP (θ) is

continuous. Hence the Linear quadratic control problem with the performance criterion given
in (2.22) satisfies Assumption 2.1.13.

2.2 Set-membership identification

As discussed in Chapter 1, adaptive control typically deals with partially unknown systems.
When the uncertainty on this system to be controlled is small enough, certainty equivalence
control design is generally adopted, i.e., the identified model is used for on-line controller
without any regard for the model errors [7], [72], [54]. However, if the uncertainty level
is unknown, a preferred approach consists in gathering information on the system through
input-output measurements, so as to reduce the uncertainty level recursively, until certainty
equivalence can be applied. In this case, rather than estimating a single model, one identifies
the set of all model candidates, i.e., the models that are consistent with all the available data
measurements. This method, called set-membership identificationand introduced in [104],
has become a central issue in identification theory.
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2.2.1 Membership set: computation

Contrary to identification methods involving point estimation of a single model, set mem-
bership identification consists of estimating the set containing all the models with a given
structure that are consistent with the available data measurements, the model structure and
the prior knowledge on the uncertainty, the membership set.
Clearly, the way this set is computed depends on the assumed model structure ([16], [17],
[80], [84]) and on the characteristics of the uncertainty ([9], [109], [110]). However, a large
number of approaches in set-membership identification literature consider time-invariant SISO
linear systems and assume the uncertainty to be unknown-but-bounded with known bounds,
according to Assumption 2.1.10 ([11], [12], [9], [39], [78], [105], [81]).

Let us suppose the system under consideration to be of the form (2.12). Suppose that the
uncertainty sequence δ satisfies Assumption 2.1.10. We have that all system models in Pn

consistent with the kth measurement (y(k), φ(k − 1)) belong to the set

G(k) = {θ ∈ Pn : δ ≤ y(k)− θTφ(k − 1) ≤ δ}, (2.26)

This set G(k) is the hyperstrip in R
2n bounded by the two parallel hyperplanes:

H(k) = {θ ∈ Pn : y(k)− θTφ(k − 1) = δ} (2.27)

H(k) = {θ ∈ Pn : y(k)− θTφ(k − 1) = δ} (2.28)

Hence, for a finite number of given measurements (y(i), φ(i − 1))i=1,··· ,k, the membership
set is given by

Ĝ(k) =
k⋂

i=1

G(i), (2.29)

where G(i), i = 1, · · · , k is given in (2.26). It is worth to note that a Matlab toolbox, the
Geometric Bounding Toolbox[107] is available for the computation of the membership set
given in (2.29).

2.2.2 Membership set: properties

We now focus on various properties of the membership set given by (2.29).

Convexity and closeness

An interesting property in set-membership identification is that the membership-set com-
puted according to (2.29) is convex and closed. Now, if the system to be identified satisfies
Assumption 2.1.9, then it is controllable and asymptotically stable, i.e., the unknown system
parameter θ0 is element of Cn ∩ Sn. Therefore it seems that a ”good” estimate should also
have these two properties, in which case they should be within the set Ĝ∗ of parameters that
are consistent with all the available measurements and the prior knowledge on the real system
defined by

Ĝ∗(k) = Ĝ(k) ∩ Cn ∩ Sn,∀k. (2.30)



18 2.2. SET-MEMBERSHIP IDENTIFICATION

However, because the sets Cn and Sn of controllable and asymptotically stable systems in Pn

are nor convex [114] neither closed in general, the set Ĝ∗(k) defined in (2.30) might not be
convex nor closed. Yet most parameter estimation methods are based on convex minimiza-
tion problems, such as the least squares identification algorithm [63], the gradient projection
algorithm [54], or the orthogonal projection algorithm [15]. Hence convexity and closeness
of the model set are desirable properties, which is the reason why one is often satisfied with
an estimate θ ∈ Ĝ(k), ∀k, even if this model is not controllable or asymptotically stable.
Then, of course, if the control design involves this model, the model has to be replaced by a
controllable one. This matter is further discussed in Chapter 3 (Section 3.3.1).

Width of hyperstrips

The width of the hyperstrip G(k) containing all the parameter vectors consistent with a given
measurement (y(k), φ(k − 1)) is a function of the uncertainty on this measurement.
Suppose the system to be of the type (2.12), such that the uncertainty sequence δ satisfies
Assumption 2.1.10. Provided that ||φ(k−1)|| �= 0, the width of the hyperstrip G(k) obtained
on the basis of the measurement (y(k), φ(k − 1)) and defined in (2.26) is given by:

W(k) =
δ − δ

||φ(k − 1)|| . (2.31)

Remark 2.2.1 If the uncertainty is zero, i.e., δ = 0, then the hyperstrip G(k) computed in
(2.26) is reduced to a hyperplane, i.e., (2.31) is replaced byW(k) = 0.

The following result immediately follows from (2.31).

Property 2.2.2 Consider any given system of the form(2.12) such that the uncertainty satis-
fies Assumption 2.1.10.Then we have that

if lim
k→∞

||φ(k)|| =∞ then lim
k→∞

W(k) = 0, (2.32)

whereW(k) is given in(2.31).

Boundedness of the membership set

Since the membership-set is computed as the intersection of hyperstrips in R
2n, it must be ob-

tained on the basis of at least 2n non-parallel hyperstrips. Now, noticing that two hyperstrips
G(i) and G(j), i �= j, are not parallel if and only if φ(i) and φ(j) are linearly independent,
we have the following property.

Property 2.2.3 The setĜ(k) defined in(2.29) is bounded if and only if the two following
statements hold:

i. k ≥ 2n;

ii. there exist2n disctinct integerski ≤ k, i = 1, · · · , 2n, and such that

det([φ(k1) · · · φ(k2n)]) �= 0. (2.33)

Equation (2.33) is an excitation-type condition.
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Radius

We suppose that the uncertainty is structured according to Assumption 2.1.10. After k mea-
surements (y(i), φ(i− 1)), i = 1, · · · , k, for any k ≥ 1, an outer bounding ball for Ĝ(k) can
be estimated as follows. For all θ ∈ Ĝ(k), and for all i ≤ k, we have:

δ ≤ y(i)− θTφ(i− 1) ≤ δ. (2.34)

Since θ0 ∈ G(k), ∀k, then (2.34) is satisfied by θ0. Hence, for all θ ∈ Ĝ(k), and for all i ≤ k,
we have:

δ − δ ≤ (θ0 − θ)Tφ(i− 1) ≤ δ − δ. (2.35)

Denoting by θ̃ = θ0 − θ the model error, and introducing the notation

δ1 = δ − δ ≥ 0, (2.36)

(2.35) can be rewritten as:
|θ̃Tφ(i− 1)| ≤ δ1. (2.37)

Therefore, for all θ ∈ Ĝ(k), and for all i ≤ k, if ||φ(i− 1)||. cos(θ̃, φ(i− 1)) �= 0 then

||θ̃|| ≤ δ1

||φ(i− 1)||.| cos(θ̃, φ(i− 1))|
=

W(i)
| cos(θ̃, φ(i− 1))|

, (2.38)

whereW(i) is given by (2.31). Hence, if

max
i≤k
{||φ(i− 1)||. cos(θ̃, φ(i− 1))} �= 0, (2.39)

then the parameter vector θ lies in the ball with center θ0 and radius ρ(k) where

ρ(k) = min
i≤k

W(i)
| cos(θ̃, φ(i− 1))|

. (2.40)

Geometrical interpretation : (2.38) can be interpreted geometrically (see Figure 2.1) as
follows. For any i ≥ 1, let θi be an element of G(i) and θ̃i = θi − θ0. Let L(θi) denote the
hyperline going through θi and θ0. Note that the vector φ(i− 1) is normal to the hyperplanes
H(i) andH(i) defined in (2.27). The condition ||φ(i− 1)||. cos(θ̃i, φ(i− 1)) �= 0 is satisfied
if an only if ||φ(i − 1)|| �= 0 and the vector θ̃i is not normal to φ(i − 1). Provided that
this condition holds, the quantity ρi = W(i)(| cos(θ̃i, φ(i − 1))|)−1 in (2.38) represents the
largest distance between the two points θi and θ0, expressing the constraint that θi and θ0 are
in L(θi) ∩ G(i). Finally, in (2.40), the quantity ρ(k) = mini≤kW(i)(| cos(θ̃, φ(i − 1))|)−1
represents the largest distance between two points θi and θ0, expressing the constraint that θi
and θ0 are in L(θi) ∩ G(i), ∀i ≤ k.
Note that the constant δ1 defined in (2.36) is known and the term φ(i−1) is measured at any

time i ≤ k. However, since θ̃ is unknown, the expression of ρ(k) in (2.40) is not computable
a-priori. However, the result (2.40) clearly shows that if the condition (2.39) holds for all
k ≥ 1, then we have

if lim
k→∞

W(k) = 0, then lim
k→∞

ρ(k) = 0. (2.41)

Hence, the following property follows from Property 2.2.2.
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L(θi)

Hi

Hiρi

ρi

θ0

θi

φ(i− 1)

W(i)

θ̃i = θi − θ0

ρi =
W(i)

| cos(θ̃i,φ(i−1))|

Figure 2.1: Membership set: outer bounding sphere

Property 2.2.4 Consider any given system of the form(2.12) such that the uncertainty satis-
fies Assumption 2.1.10. Suppose the input sequence to be such that that the condition(2.39)
holds for allk ≥ K,K > 0. Then we have:

if lim
k→∞

||φ(k)|| =∞ then lim
k→∞

ρ(k) = 0, (2.42)

whereW(k) is given in(2.31).

Property 2.2.4 indicates that if the identification input sequence satisfies the condition (2.39)
and yields regressors with arbitrarily large magnitude, then the membership set Ĝ(k) con-
verges to the point set {θ0}.

Outer bounding sets

A Matlab toolbox is now available to compute the exact polytopic membership set Ĝ(k) given
in (2.29) on the basis of measurements [107]. However, this recursive computation is quite
cumbersome and rather often, a tight approximation of this set is sufficient to describe the set
of models that are consistent with the available data measurements [59], [5]. Hence, many
approaches are based on the computation of an outer-bounding set of Ĝ(k), leading to easier
computation. Of course, this outer bounding should be ”tight” in order to be a good approx-
imation of Ĝ(k), with a minimal size or volume. This idea, illustrated in Figure 2.2, gave
rise to the concept of optimal bounding sets, such as optimal bounding orthotopes [79], or
the more popular optimal bounding ellipsoids(OBE) [39], [34], [98]. The recursive compu-
tation of optimal bounding ellipsoids can be done according to various ellipsoid algorithms
[100], [23], [19], [66], [58], [98]. The central idea of these algorithms is the computation of a
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Ĝ(k)Ĝ(k)

Outer bounding orthotopes Outer bounding ellipsoids

Figure 2.2: Membership set: outer bounding sets

supporting halfspace of one constraint set. When intersecting with the current ellipsoidal ap-
proximation to the membership set, the halfspace should provide maximal volume reduction
in the approximation. It can be shown that good convergence properties of these algorithms
would imply that the outer-bounding ellipsoids asymptotically approach the membership set
in some meaningful sense. Moreover, it has been shown that the centroid of these ellipsoids
can be derived as a solution of a certain constrained least square problem that is computation-
ally cheap.

To illustrate this concept of outer bounding ellipsoidal approximation of the membership set
in our framework, let us suppose that we have obtained 2n distinct measurements
(y(ki), φ(ki − 1)), i = 1, · · · , 2n, and k1 < k2 < · · · < k2n. Let us suppose the bounded-
ness condition (2.33) is satisfied, implying that the membership set Ĝ(k2n) is bounded.

Initial outer bounding ellipsoid: the first step of the classical ellipsoid algorithm would
consist in computing an ellipsoidal set which contains Ĝ(k2n), corresponding to the following
problem.

Problem 2.2.5 Find (P, ω) with P = PT ∈ R
2n×2n andω ∈ R

2n such that

Ĝ(k2n) ⊂ {θ : (ω − θ)TP−1(ω − θ) ≤ 1}. (2.43)

Such a solution always exists, since Ĝ(k2n) is bounded, and the set

E = {θ : (ω − θ)TP−1(ω − θ) ≤ 1} (2.44)

is then an outer bounding ellipsoid for Ĝ(k2n). ω is the center of the ellipsoid E and the
positive definite matrix P gives the ”size” and orientation of E [23]: the square roots of the
eigenvalues of P are the lengths of the semi-axes of E . The volume of E is given by

Vol(E) = V0
√
det(P ), (2.45)

where V0 denotes the volume of the unit ball in R
2n.
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Recursive optimal outer bounding ellipsoid: at each new measurement (y(k), φ(k − 1)),
k ≥ k2n + 1, a new ellipsoid bounding the intersection Ĝ(k − 1) ∩ G(k) is computed, where
G(k) is given in (2.26). Since G(k) can be seen as the intersection of the two halfplanes

H1 = {θ ∈ R
2n : y(k)− θTφ(k − 1) ≥ δ} (2.46)

H2 = {θ ∈ Pn : y(k)− θTφ(k − 1) ≤ δ} (2.47)

the problem is to compute an outer bounding ellipsoid for the intersection of the ellipsoid
E defined in (2.44) and the two closed halfplanes H1 and H2. In this respect we have the
following result [41].

Lemma 2.2.6 (Minimum volume bounding ellipsoid) LetN ≥ 2 and letE ⊂ R
N , be an

ellipsoid with centerω and described by the positive definite matrixP . Also, letH be the
closed halfspace{x : aTx ≤ β}, a ∈ R

N andβ > 0. The minimum volume ellipsoid̂E
bounding the intersectionE ∩H is described by

Ê = {x ∈ R
2n : (x− ω̂)T P̂−1(x− ω̂) ≤ 1} (2.48)

ω̂ = ω − τ Pa√
aTPa

, P̂ = µ(P − κPaa
TP

aTPa
) (2.49)

where

τ =
1 +Nα
N + 1

, α =
aTω − β√
aTPa

, µ =
N2(1− α2)
N2 − 1

, κ =
2(1 +Nα)

(N + 1)(1 + α)
. (2.50)

For α > 1, E ∩ H = ∅ and forα ≤ −1/N , Ê = E . For −1/N < α < 1, the ratio of the
volume ofÊ to the volume ofE is a decreasing function and is given by

r(α) = (µN (1− κ))1/2, (2.51)

whereµ andκ are given in(2.50).

Lemma 2.2.6 provides a way to compute recursively the smallest ellipsoid outer-bounding
the membership set.

2.2.3 Model selection

The purpose of set-membership identification is to provide us with the set of all model can-
didates to represent the real system. Now, in a more general adaptive control scheme, one
usually desires to update a model point, on the basis of which the controller is designed using
the certainty equivalence principle. Supposing that the membership set is computed at each
measurement, it is natural to choose this model in the membership set, in such a way that
if the new measurement does not falsify the present model, then this model is not updated.
Conversely, if the new measurement does falsify the present model, then the model is updated
in a new model which is closer to the real unknown system. A large part of the approaches
following this idea include the celebrated least squares(LS) or, more generally, the weighted
least squares(WLS) algorithm [2], [77].



CHAPTER 2. MATHEMATICAL FRAMEWORK 23

Least squares algorithm

For a given set of data (y(i), φ(i− 1)), i = 1, · · · , k, the WLS estimate θ̂k is the solution of
the minimization problem

θ̂k = argmin
θ

k∑
i=1

qi(y(i)− θTφ(i− 1))2 (2.52)

where the terms qi are nonnegative weights. This algorithm has the great advantage to be im-
plemented recursively as follows. Given the estimate at time k, θ̂k, and the new measurement
(y(k + 1), φ(k), the new RWS estimate is computed by

θ̂k = θ̂k−1 +
qk+1Pkφ(k)

1 + qk+1(φ(k))TPkφ(k)
(y(k + 1)− θ̂Tk φ(k)),∀k, (2.53)

where the matrix Pk ∈ R
2n×2n is computed recursively by

Pk+1 = Pk −
qk+1Pkφ(k)(φ(k))TPk

1 + qk+1(φ(k))TPkφ(k)
,∀k. (2.54)

Another advantage of this WLS estimate recursive computation is that it does not need any
a-priori assumption on the uncertainty δ in (2.12). However, it is well known that the WLS
estimate given in (2.52) is in general not in the membership set Ĝ(k). Therefore, some mod-
ification is necessary to ensure that the WLS estimate lies in or converges to the membership
set. In this respect, the authors of [10] established the following result in the case of bounded-
but-unknown uncertainty.

Theorem 2.2.7 (Modified Recursive Least squares) consider the system(2.12) and sup-
pose that the uncertainty sequenceδ satisfies Assumption 2.1.10 with−δ = δ ≥ 0. Consider
the recursive WLS algorithm(2.53) and (2.54) with P0 = PT

0 and arbitrary θ̂0. For any
ε > 0, let qk be defined for allk ≥ 1 by:

qk = 0, |y(k)− (θ̂k−1)Tφ(k − 1)| ≤ δ + ε,

qk =
|y(k)− (θ̂k−1)Tφ(k − 1)| − δ
δ(φ(k − 1))TPk−1φ(k)

, |y(k)− (θ̂k−1)Tφ(k − 1)| > δ + ε.

(2.55)

Then the WLS estimatêθk converges to the membership set asymptotically in the following
sense: for anyε > 0, there exists a finite numberNε ∈ N such that∀i ≥ Nε,

θ̂k ∈
∞⋂

m=Nε

{θ ∈ R
2n : |y(m)− θTφ(m− 1)| ≤ δ + ε}. (2.56)

Yet in some applications, asymptotic convergence of the estimate to the membership set might
not be satisfactory. In particular, in this thesis (Chapter 5) it will be crucial that the estimate
θ̂k belongs to the membership set. Hence, we will use the orthogonal projection algorithm.
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Orthogonal projection algorithm

For a given set of data (y(i), φ(i − 1)), i = 1, · · · , k, k ≥ 1, the orthogonal projection
estimate θ̂k is computed as the orthogonal projection of the previous estimate on the present
membership set:

θ̂k = arg min
θ∈Ĝ(k−1)

(θ − θ̂k−1)T (θ − θ̂k−1). (2.57)

Figure 2.3 illustrates this idea. This algorithm guarantees that the estimate is in the mem-

Ĝ(k − 1)

Ĝ(k)

Ĝ(k + 1)

θ̂k−1

θ̂k
θ̂k+1 G(k)

G(k + 1)

Figure 2.3: Orthogonal projection algorithm

bership set, at any time. If the estimate is updated according to (2.57), then we have the
following property [72].

Property 2.2.8 (Orthogonal projection algorithm) The model error sequence is non-increasing,
i.e.,

||θ0 − θ̂k+1|| ≤ ||θ0 − θ̂k||, ∀k, (2.58)

and is asymptotically slow, i.e.,

lim
k→∞

||θ̂k+1 − θ̂k|| = 0. (2.59)

Property 2.2.8 holds regardless how the input is generated.



Chapter 3

Strong robustness and related
notions

In this chapter the notion of strong robustness introduced in Chapter 1 is mathematically de-
fined. Then, issues raised by the introduced concept are investigated within the mathematical
framework defined in the previous chapter and some of the results are illustrated by means
of simple examples in the first order case. In particular it is established that there exists a
strongly robust open neighborhood around any systems inCn. Moreover, it is proved that if
a set of systems satisfies a criterion involving the notion of structured stability radius, then
this set is strongly robust with respect to any control objective belonging to the previously
defined class of control objectives. Further, for specified subsets of systems inCn, we show
that tractable tests for characterizations of strong robustness can be constructed using linear
matrix inequalities (LMI’s) or a Kharitonov-like stability test. Finally, an extended notion of
strong robustness, called weak strong robustness, is investigated.

3.1 Definitions

3.1.1 Strong robustness

We first recall the definitions of asymptotic stability and quadratic stability for linear discrete
systems.

Definition 3.1.1 (Asymptotic and quadratic stability) Consider the linear time-varying dis-
crete system described by

x(k + 1) =M(k)x(k), x(0) (3.1)

wherex ∈ R
N denotes the state vector andM(k) ∈ R

N×N denotes the dynamics matrix.
1. The system(3.1) is asymptotically stable [93] if there existsε > 0 such that if||x(0)|| ≤ ε,
thenlimk→∞ ||x(k)|| = 0.
2. The system(3.1) is quadratically stable [111] if there exists a matrixK = KT ∈ R

N×N

such thatK > 0 and
[M(k)]TKM(k)−K + I < 0, ∀k. (3.2)

25
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We define the notion of strong robustnessas follows.

Definition 3.1.2 (Strong robustness) LetΩ be a subset of the setPn defined in Definition
2.1.1. Suppose that the control objective is given and satisfies Assumption 2.1.13. For any
systemθ ∈ Cn defined by

y(k + 1) = θTφ(k), φ(0),

where
θ = (an−1 · · · a0 bn−1 · · · b0)T ∈ Cn, (3.3)

and where the regressor vectorφ is given by

φ(k) = (−y(k) · · · − y(k − n+ 1) u(k) · · · u(k − n+ 1))T ∈ R
2n, (3.4)

f(θ) denotes the controller defined in Assumption 2.1.13, leading to the control law

u(k) = f(θ)x(k), (3.5)

where the state vectorx is given by

x(k) = (y(k), · · · , y(k − n+ 1), u(k − 1), · · · , u(k − n+ 1))T . (3.6)

The set of systemsΩ is strongly robust with respect to the given control objective if the two
following conditions hold:

• Ω ⊂ Cn;

• for any systemθ ∈ Ω and for any sequence of systems{θ(k)}k∈N ⊂ Ω, the time-
varying closed-loop system defined by:

y(k + 1) = θTφ(k)
u(k) = f(θ(k))x(k), (3.7)

where the vectorsφ(k) ∈ R
2n andx(k) ∈ R

2n are given in(3.4) and (3.6) respec-
tively, is asymptotically stable as defined in Definition 3.1.1.

Remark 3.1.3 Definition 3.1.2 could be extended to a larger class of systems. Indeed, a sim-
ilar definition could be established considering systems that may be nonlinear, time-varying,
in continuous time description, stochastic and non-asymptotically stable. However, in this
thesis we restrict ourselves to sets of systems in Pn.

Remark 3.1.4 The main difference between the classical concept of robustness and the
strong robustness notion lies in the idea that the former involves a fixed nominal model,
whereas the latter allows time-variability.

Property 3.1.5 The following statements hold:

• Any subset of a strongly robust set of systems is strongly robust.

• For any system θ ∈ Cn, the point-set {θ} is strongly robust.
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We now illustrate Definition 3.1.2 by means of two simple examples in the case of first order
systems.

Example 3.1.6 (Strong robustness and pole placement) We consider pole placement de-
sign in the case of first order systems in P1. Let α denote the desired closed-loop pole, with
|α| < 1. Using the notation introduced in Chapter 2, P1 consists of the discrete-time systems
(a, b)T ∈ R

2 described by
y(k + 1) + ay(k) = bu(k). (3.8)

If (a, b)T ∈ C1, i.e., if b �= 0, the feedback controller achieving pole placement inα associated
with (3.8) leads to the control law

u(k) =
a+ α
b
y(k) (3.9)

Hence, a set Ω ⊂ C1 is strongly robust with respect to pole placement in α if and only if
for any system (a, b)T ∈ Ω and for any sequence of systems {(a(k), b(k))T }k∈N ⊂ Ω, the
closed-loop system described by

y(k + 1) = (−a+ ba(k) + α
b(k)

)y(k) (3.10)

is asymptotically stable. Thus Ω ⊂ C1 is strongly robust with respect to pole placement in
α if and only if for any system (a, b)T ∈ Ω and for any sequence {(a(k), b(k))T }k∈N ⊂ Ω,
the absolute value of the time-varying closed-loop pole of the system (3.10) is smaller than
1 and stays bounded away from 1. Formally, Ω ⊂ P1 is strongly robust with respect to pole
placement in α if and only if for any system (a, b)T ∈ Ω, b �= 0 and

∃ε ∈]0, 1[: | − a+ ba(k) + α
b(k)

| < 1− ε,∀(a, b)T ∈ Ω,∀{(a(k), b(k))T }k∈N ⊂ Ω. (3.11)

Example 3.1.7 (Strong robustness and Linear Quadratic control) We consider Linear
Quadratic (LQ) control design in the case of first order systems in P1. Suppose that the
LQ control objective is to minimize the quadratic cost criterion

J =
∞∑

k=0

y(k)2 + ru(k)2, (3.12)

where the weight r > 0 is given. If (a, b)T ∈ C1, the feedback control input u minimizing J
given in (3.12) associated with (3.8) is given by [6]:

u(k) = f(a, b)y(k) = −bp(a, b)
r

y(k), (3.13)

where p(a, b) is equal to the unique positive root p of the Algebraic Riccati Equation

−1
r
b2p2 − 2ap+ 1 = 0. (3.14)
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Hence the input sequence that minimizes the criterion given in (3.12) is

u(k) = [
a

b
− 1
rb

√
a2r2 + b2r]y(k). (3.15)

It follows from the discussion in Example 3.1.6 that Ω ⊂ P1 is strongly robust with respect
to LQ control with quadratic cost (3.12) if and only if for any system (a, b)T ∈ Ω, b �= 0 and
there exists ε ∈]0, 1[ such that

|− a+ b[a(k)
b(k)

− 1
rb(k)

√
a2(k)r2 + b2(k)r]<1−ε,∀(a, b)T ∈Ω,∀{(a(k), b(k))T }k∈N⊂Ω.

(3.16)

In Definition 3.1.2, the notion of asymptotic stability plays a crucial role but could theoreti-
cally be replaced by other stability notions. For instance, involving quadratic stability [111],
the notion of strongly quadratically robust sets of systemsis defined as follows.

Definition 3.1.8 (Strong quadratic robustness) LetΩ ⊂ Pn and suppose that the control
objective is given and satisfies Assumption 2.1.13.Ω is strongly quadratically robust with
respect to the given control objective ifΩ ⊂ Pn and for any systemθ ∈ Ω there exists a
quadratic Lyapunov function for the time-varying system defined by(3.7), for any sequence
of systems{θ(k)}k∈N ⊂ Ω. More precisely,Ω is strongly quadratically robust with respect
to the given control objective if the two following statements hold:

• Ω ⊂ Pn;

• for any systemθ ∈ Ω there exists a matrixK = KT > 0 in R
(2n−1)×(2n−1) such

that for any sequence of systems{θ(k)}k∈N ⊂ Ω, the following matrix inequality is
satisfied:

[A(θ) +B(θ)f(θ(k))]TK[A(θ) +B(θ)f(θ(k))]−K + I < 0. (3.17)

whereA(θ),B(θ) andf(θ) are given by

A(θ) =




−an−1 · · · · · · −a1 −a0 bn−2 · · · · · · b1 b0
1 0 · · · 0 0 0 · · · · · · 0 0

0
. . .

...
...

...
...

...
...

.. . 0
...

...
...

...
... 1

...
...

...
...

0 · · · · · · 0 0 0 · · · · · · 0 0
... 0

... 1
...

...
...

...
... 0

. ..
...

...
...

...
...

...
. . . 0

...
0 · · · · · · 0 0 0 · · · · · · 1 0




(3.18)

B(θ) =
[
bn−1 0 · · · 0 1 0 · · · · · · 0

]T
(3.19)
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with
θ = (an−1, · · · , a0, bn−1, · · · , b0)T ∈ R

2n (3.20)

andf(θ) is the controller defined in Assumption 2.1.13.

Example 3.1.9 (Strong quadratic robustness and pole placement) We now revisit Exam-
ple 3.1.6 to illustrate the notion of quadratic strong robustness in the case of first order pole
placement design. It follows from Definition 3.1.8 that a set Ω ⊂ C1 is strongly quadrati-
cally robust with respect to pole placement in α if and only if for any system (a, b)T ∈ Ω
and for any sequence of systems {(a(k), b(k))T }k∈N ⊂ Ω, there exists a quadratic Lya-
punov function for the time-varying closed-loop system described by (3.10). Thus Ω ⊂ C1 is
strongly quadratically robust with respect to pole placement in α if and only if for any system
(a, b)T ∈ Ω and for any sequence {(a(k), b(k))T }k∈N ⊂ Ω, there existsK ∈ R,K > 0 such
that

|−a+ba(k) + α
b(k)

|.K.|−a+ba(k) + α
b(k)

|−K+1 < 0,∀(a, b)T ∈ Ω,∀{(a(k), b(k))T }k∈N ⊂ Ω

equivalently if and only if there existsK ∈ R,K > 0 such that

| − a+ ba(k) + α
b(k)

|2 < 1− 1
K
,∀(a, b)T ∈ Ω,∀{(a(k), b(k))T }k∈N ⊂ Ω. (3.21)

(3.21) is equivalent to (3.11), meaning that in the first order case, a set of systems is strongly
quadratically robust with respect to pole placement in a stable pole α if and only if it is
strongly robust with respect to pole placement in α. We easily check that this result also
applies irrespective of the adopted control law.

It is shown in [111] that if the system (3.7) is quadratically stable then it is asymptotically
stable for any sequence {θ(k)}k∈N ⊂ Ω. Thus if a set is strongly quadratically robust then
it is also strongly robust. We see further in this chapter (see Section 3.3.3) that under some
additional assumptions on the considered sets of systems, strongly quadratically robust sets
of systems might be easier to characterize than strongly robust sets.

Now, it is clear that in order to be strongly robust, a set of systems in Cn is necessarily such
that for any system in this set, the controller based on it stabilizes any other system, i.e., the
property of strong robustness without time-variations of the involved controller is necessarily
satisfied. This leads to a simplified notion of strong robustness, the time-invariant strong
robustness.

Definition 3.1.10 (Time-invariant strong robustness) Let Ω ⊂ Pn and suppose that the
control objective is given and satisfies Assumption 2.1.13.Ω is time-invariant strongly robust
with respect to the given control objective ifΩ ⊂ Cn and for any systemsθ, θ′ ∈ Ω, the system
defined by

y(k + 1) = θTφ(k)
u(k) = f(θ′)x(k), (3.22)

where the vectorsφ(k) ∈ R
2n andx(k) ∈ R

2n are given in(3.4) and (3.6) respectively, is
asymptotically stable.
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Example 3.1.11 (Time-invariant strong robustness and pole placement) We consider first
order pole placement design. Similar to Example 3.1.6, let α denote the desired closed-loop
pole, with |α| < 1. It follows from (3.11) that Ω ⊂ P1 is time-invariant strongly robust with
respect to pole placement in α if and only if Ω ⊂ C1 and

| − a+ ba
′ + α
b′

| < 1,∀(a, b)T , (a′, b′)T ∈ Ω. (3.23)

Equation (3.23) has a simple interpretation in the Euclidean plane as illustrated in Figure
3.1. A set of systems is time-invariant strongly robust if it is completely contained within
the interior of a parallelogram bounded by parallel lines going through the points (1, 0) and
(α, 0), as well as parallel lines through the points (−1, 0) and (α, 0). The uncontrollable
system (α, 0) is thus at the corner of these maximally strongly robust sets of systems.
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Figure 3.1: Time-invariant strong robustness with respect to pole-placement in α.

Remark 3.1.12 Using the geometrical construction in Example 3.1.11, we easily check that
the unique unbounded set containing a given system (a0, b0) which is strongly robust with
respect to pole placement in a given stable pole α0 is the line going through the points (a0, b0)
and (−α, 0). This line is the set of systems θ yielding a controller f(θ) which is exactly the
controller f(θ0).

Example 3.1.13 (Time-invariant strong robustness and LQ control) Let us investigate the
case of time-invariant strong robustness for first order LQ control placement design. Similar
to Example 3.1.7, we focus on LQ control with a quadratic cost given in (3.12). It follows
from (3.16) that Ω ⊂ P1 is time-invariant strongly robust with respect to the LQ control
defined by (3.12) if and only if Ω ⊂ C1 and

| − a+ b[a
′

b′
− 1
rb′

√
a′2r2 + b′2r]| < 1,∀(a, b)T ,∀(a′, b′)T ∈ Ω. (3.24)

Equation (3.24) can be geometrically interpretation in the Euclidean plane (a, b)T as illus-
trated in Figure 3.2 and Figure 3.3. Let us first suppose that r = 1. Let (a0, b0) be a system
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in R
2. Let Σ0 denote the set of systems in R

2 defined by:

Σ0 = {(a, b)T : | − a+ b[a0
b0
− 1
b0

√
a20 + b

2
0]| < 1}. (3.25)

It can be easily shown that Σ0 represents the region between the two parallel lines with
direction 2v = (

√
a20 + b

2
0 − a0,−b0) and going through the points (1, 0) and (−1, 0) re-

spectively. This region is represented in Figure 3.2. Hence, given a set Ω ⊂ R
2, Ω is

time invariant strongly robust with respect to LQ control defined in (3.12) with r = 1 if
and only if it completely belongs to the parallelogram bounded by the parallel lines going
through the points (1, 0) and (−1, 0) with direction given by 2v1 = (

√
a21 + b

2
1 − a1,−b1) as

well as the parallel lines going through the points (1, 0) and (−1, 0) with direction given by
2v2 = (

√
a22 + b

2
2 − a2,−b2) where (a1, b1) and (a2, b2) are the points where the minimum-

volume cone with vertex (0, 0) containing Ω intersects Ω. This construction is illustrated in
Figure 3.3.
Then, if r �= 1, denote by Ωr the set of systems obtained by multiplying the coordinate b of
the systems in ω by 1√

r
defined by:

Ωr = {(a,
b√
r
)T ∈ R

2 : (a, b)T ∈ Ω}. (3.26)

Then the following result follows from our previous discussion. A set Ω ⊂ R
2 is time invari-

ant strongly robust with respect to LQ control defined in (3.12) with r > 0 if and only if the set
Ωr defined in (3.26) completely belongs to the parallelogram bounded by the parallel lines go-
ing through the points (1, 0) and (−1, 0) with direction given by
2v1 = (

√
a21 + b

2
1 − a1,−b1) as well as the parallel lines going through the points (1, 0)

and (−1, 0) with direction given by 2v2 = (
√
a22 + b

2
2 − a2,−b2) where (a1, b1) and (a2, b2)

are the points where the minimum-volume cone with vertex (0, 0) containing Ωr intersects
Ωr.

Time-invariant strong robustness is a weaker notion than strong robustness, meaning that
the former does not imply the latter. Indeed, already in the first order case (n = 1), time-
variations of the controller do play a role in the stability of the closed-loop system. To prove
this result, let us consider pole placement in α, |α| < 1. Consider a set Ω ⊂ C1 such that
there exists a system θ0 ∈ Ω and a sequence of systems {θ(k)}k∈N ⊂ Ω such that

lim
k→∞

b(k) = b0 and lim
k→∞

a(k) = 1 + a0 − α (3.27)

and such that

| − a0 + b0α+ a(k)
b(k)

| < 1,∀k ∈ N. (3.28)

(3.28) implies that

lim
k→∞

| − a0 + b0α+ a(k)
b(k)

| = 1, (3.29)

thus (3.23) is satisfied, hence Ω is time-invariant strongly robust with respect to pole place-
ment in α. However, (3.27) implies that (3.11) is not satisfied, hence Ω is not strongly robust
with respect to pole placement in α. Nevertheless we have the following property.
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a

b

(0, 0)

a = −1 a = 1

a0

b0
ρ ρ =

√
a20 + b

2
0 − a0

−b0

γ

γ

(ρ,−b0)

Σ0

(−1, 0) (1, 0)

Figure 3.2: Time-invariant strongly robust set with respect to LQ control, r=1
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(0, 0)

a = −1 a = 1

Ω

γ1

γ1

γ1

γ2

γ2

γ2

P1 = (a1, b1)

P2 = (a2, b2)
P1P2

(−1, 0) (1, 0)

Figure 3.3: Time-invariant strongly robust set with respect to LQ control, r=1
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Property 3.1.14 LetΩ ⊂ C1 be a compact set. Suppose that the control objective is given
and satisfies Assumption 2.1.13. ThenΩ is strongly robust (equivalently strongly quadrati-
cally robust) with respect to this control objective if and only if it is time-invariant strongly
robust with respect to this control objective.

Proof: Let Ω ⊂ C1 be a compact set. Suppose that the control objective is given and satisfies
Assumption 2.1.13. Suppose that Ω is time-invariant strongly robust but not strongly robust.
Then, we have

| − a+ bf(a′, b′)| < 1,∀(a, b)T ,∀(a′, b′)T ∈ Ω, (3.30)

and there exists a system (a0, b0)T ∈ Ω and there exists a sequence of systems
{(a(k), b(k))T }k∈N ⊂ Ω such that

lim
k→∞

| − a0 + b0f(a(k), b(k))| = 1. (3.31)

Now, due to the continuity of f (Assumption 2.1.13), the function defined by

g : (a, b)T ∈ Ω→ | − a0 + b0f(a, b)| ∈ [0, 1[ (3.32)

is continuous. Now, it follows from the compactness of Ω that

lim
k→∞

| − a0 + b0f(a(k), b(k))| ∈ {| − a+ bf(a′, b′)| : (a, b)T ∈ Ω, (a′, b′)T ∈ Ω} (3.33)

thus (3.31) implies

1 ∈ {| − a+ bf(a′, b′)| : (a, b)T ∈ Ω, (a′, b′)T ∈ Ω}. (3.34)

However, (3.34) contradicts (3.30). Hence the assumption that Ω is not strongly robust is
falsified. Therefore Ω is strongly robust. In Example 3.1.9, we have shown that strong ro-
bustness and strong quadratical robustness are equivalent in the first order case.

In general, in the higher order case, the three notions defined in Definition 3.1.2, Definition
3.1.10 and Definition 3.1.8 are not equivalent. Strong quadratic robustness implies strong
robustness, which in turn implies time-invariant strong robustness.

Remark 3.1.15 Whether or not a given set is strongly robust depends on the control objec-
tive. This indicates a link between performance and uncertainty. If an uncertainty set is not
strongly robust with respect to a particular control objective, it may be strongly robust with
respect to another control objective. Information about the uncertainty set may be used to find
the most suitable control objective. This is an important property in control design, normally
lacking from classical adaptive control discussions.

Remark 3.1.15 suggests to revisit once again the notion of strong robustness and introduce
the notion of weak strong robustness as follows.

Definition 3.1.16 (Weak strong robustness) Let Ω ⊂ Pn and letF be a class of control
objectives that satisfy Assumption 2.1.13.Ω is weakly strongly robust (respectively weakly
strongly quadratically robust, weakly time-invariant strongly robust) with respect toF if there
exists a control objective inF with respect to whichΩ is strongly robust (respectively strongly
quadratically robust, time-invariant strongly robust).
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Example 3.1.17 (Weak strong robustness and pole placement) We revisit Example 3.1.6
so as to illustrate the notion of weak strong robustness. It follows from Definition 3.1.16 that
a set Ω ⊂ P1 is weakly strongly robust with respect to pole placement in a stable pole if and
only if there exists a stable pole such that Ω is strongly robust with respect to pole placement
in this pole, i.e., ∀(a, b)T ∈ Ω, b �= 0 and

∃α ∈]−1, 1[,∃ε ∈]0, 1[: |−a+ba(k) + α
b(k)

| < 1−ε,∀(a, b)T ∈ Ω,∀{(a(k), b(k))T }k∈N ⊂ Ω.

(3.35)
A geometrical interpretation of (3.35) is presented in Figure 3.4. We construct T+ as the line
tangent to Ω going through (1, 0) on the right-hand side of Ω. We denote by T ′

+ the line
parallel to T+ and tangent to Ω on the left-hand side of Ω. We denote by α the intersection
between T ′

+ and the a-axis. Similarly, we construct T− as the line tangent to Ω going through
(−1, 0) on the left-hand side of Ω. We denote by T ′

− the line parallel to T− and tangent to
Ω on the right-hand side of Ω. We denote by α the intersection between T ′

− and the a-axis.
It can easily be checked that the set Ω is weakly strongly robust (according to (3.35)) if and
only if −1 < α ≤ α < 1. More precisely, if −1 < α ≤ α < 1, Ω is strongly robust with
respect to pole placement in any stable pole α ∈ [α, α]. If α > α or if [α, α]∩] − 1, 1[= ∅,
then Ω is not weakly strongly robust with respect to any pole placement in a stable pole.

a

b

(0, 0)

a = −1 a = 1

Ω

α α

T+

T ′
+

T−

T ′
−

(−1, 0) (1, 0)

Figure 3.4: Weak strong robustness with respect to pole-placement.

In the remaining of this chapter, we adopt the following convention.

Convention 3.1.18 When the control objective is not specified, it is assumed to be fixed, a
priori given, and it satisfies Assumption 2.1.13. The associated control law introduced in
Assumption 2.1.13 will be denoted by f . Moreover, for any set Ω ⊂ Cn, we denote by f(Ω)
the set of controllers associated with systems in Ω, defined by

f(Ω) = {f(θ) : θ ∈ Ω}. (3.36)
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3.1.2 Strong robustness radius

It follows from Assumption 2.1.13 that for any given system θ0 ∈ Cn, the closed loop system
(θ0, f(θ0)) defined by

y(k + 1) = (θ0)Tφ(k) (3.37)

u(k) = f(θ0)x(k)

is asymptotically stable. Otherwise stated, the set {θ0} is strongly robust. Now if θ0 ∈
Pn \ Cn, Definition 3.1.2 implies that for any control objective satisfying Assumption 2.1.13,
there does not exist any strongly robust set containing θ0. To go further, we now examine the
following issue: for a given system θ0 ∈ Cn, what is the magnitude of the largest perturbation
on θ0 such that the set described by the perturbed system is strongly robust? This leads to the
notion of strong robustness radius.

Strong robustness radius

The strong robustness radius around a given system in Pn is defined as follows.

Definition 3.1.19 (Strong robustness radius) Let θ0 ∈ Pn. We call strong robustness ra-
dius aroundθ0 the radiusρSR(θ0) of the largest strongly robust ball of systems with center
θ0:

ρSR(θ0) = max
∆0≥0

{∆0 ∈ R
2n : {θ = θ0 +∆θ : ∆θ ∈ R

2n, ||∆θ|| ≤ ∆0} is strongly robust}.
(3.38)

By convention, ifθ0 ∈ Pn \ Cn, we use the notation:ρSR(θ0) = 0.

Of course, a notion similar to strong robustness radius can be extended to lead to the notion
of strong quadratic robustness radius around θ0, denoted by ρQSR(θ0). Naturally, we have:

0 ≤ ρQSR(θ0) ≤ ρSR(θ0),∀θ0 ∈ Cn. (3.39)

We now introduce the following notation.

Notation 3.1.20 For a given systemθ0 ∈ Pn, we denote byTθ0 the largest set of systems in
Cn containingθ0 such that for any sequence of systems{θ(k)}k∈N ⊂ Tθ0 , the time varying
system defined by

y(k + 1) = (θ0)Tφ(k)
u(k) = f(θ(k))x(k), (3.40)

where the vectorsφ(k) ∈ R
2n andx(k) ∈ R

2n are given in(3.4) and (3.6) respectively, is
asymptotically stable. Moreover we denote byrθ0 the radius of the largest sphere with center
θ0 that is contained inTθ0 . By convention, ifθ0 ∈ Pn \ Cn, thenTθ0 = ∅ andrθ0 = 0.

For any θ0 ∈ Cn, the set Tθ0 defined in Notation 3.1.20 exists since {θ0} ⊂ Tθ0 . Any strongly
robust set of systems in Cn containing θ0 is a subset of Tθ0 . Hence we have:

rθ0 ≥ ρSR(θ0), ∀θ0 ∈ Pn, (3.41)

where ρSR(θ0) is defined in (3.38). We have the following result.
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Theorem 3.1.21

A setΩ ⊂ Pn is strongly robust⇔ Ω ⊂
⋂
θ∈Ω

Tθ. (3.42)

Proof: it directly follows from Definition 3.1.2

Theorem 3.1.21 leads to the following corollary.

Corollary 3.1.22 LetΩ be a non-empty ball of systems inPn and letr(Ω) denote its radius.
We have the following results.

i. If r(Ω) ≤ 1
2 minθ∈Ω rθ thenΩ is strongly robust, whererθ is defined in Notation

3.1.20.

ii. If Ω is strongly robust, thenr(Ω) ≤ 1
2 minθ∈∂(Ω) dθ, where∂(Ω) is the boundary ofΩ

anddθ = maxθ′∈Tθ
||θ′ − θ||, ∀θ ∈ Cn, whereTθ is defined in Notation 3.1.20.

Proof:
i. Suppose Ω to be a non-empty ball of systems in Pn and suppose that its radius r(Ω)
satisfies

r(Ω) ≤ 1
2
min
θ∈Ω

rθ. (3.43)

Now, for any θ, θ′ ∈ Ω, we have: ||θ − θ′|| < 2r(Ω). Hence, for any θ, θ′ ∈ Ω, we have:

||θ − θ′|| < min
θ′′∈Ω

rθ′′ ≤ rθ. (3.44)

Thus for any θ, θ′ ∈ Ω, θ′ belongs to the largest ball of systems with center θ and with radius
rθ, hence Ω ⊂ Tθ, ∀θ ∈ Ω. Equivalently, we have: Ω ⊂

⋂
θ∈Ω Tθ. It follows from Theorem

3.1.21 that Ω is strongly robust. Hence i..

ii. Suppose Ω to be a strongly robust ball of systems in Pn. Then, it follows from Theorem
3.1.21 that for any θ, θi ∈ Ω, we have that θi ∈ Tθ0 . Hence we have:

∀θ, θi ∈ Ω, ||θ − θi|| ≤ dθ = max
θ′∈Tθ

||θ′ − θ||. (3.45)

Therefore,
∀θ, θi ∈ Ω, max

θi∈Ω
||θ − θi|| ≤ dθ. (3.46)

Equivalently, we have
∀θ, θi ∈ Ω, max

θi∈∂(Ω)
||θ − θi|| ≤ dθ. (3.47)

Since maxθi∈∂(Ω) ||θ − θi|| = 2r(Ω), (3.47) is equivalent to:

∀θ ∈ ∂(Ω), r(Ω) ≤ 1
2
dθ. (3.48)

and therefore we have r(Ω) ≤ 1
2 minθ∈∂(Ω) dθ, which concludes the proof of ii.
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Time-invariant strong robustness radius

The notion of strong robustness radius around a given system in Pn can be restricted to the
time-invariant case. In this respect, the time-invariant strong robustness radius [25] around a
given system in Cn is defined as follows.

Definition 3.1.23 (Time-invariant strong robustness radius) Let θ0 ∈ Pn. We call time-
invariant strong robustness radius aroundθ0 the radiusρTISR(θ0) of the largest time-
invariant strongly robust ball of systems with centerθ0:

ρTISR(θ0) = max
∆0≥0

{∆0 :{θ = θ0 +∆:∆ ∈ R
2n, ||∆|| ≤ ∆0} is time-invariant strongly robust}.

By convention, ifθ0 ∈ Pn \ Cn, we will note:ρTISR(θ0) = 0.

Naturally, we have:
ρSR(θ0) ≤ ρTISR(θ0),∀θ0 ∈ Pn, (3.49)

where ρSR(θ0) is defined in (3.38) We now introduce the set of stabilizing controllers.

Definition 3.1.24 (Set of stabilizing controllers for systems in Cn) Suppose that the
control objective is fixed and satisfies Assumption 2.1.13. Given a systemθ ∈ Cn, we de-
note bySθ the set of controllers that stabilizeθ defined by

Sθ = {ϕ ∈ f(Cn) : A(θ) +B(θ)ϕ is Schur stable}, (3.50)

where A(θ) and B(θ) are given in (3.18) and (3.19) respectively. By convention, if
θ ∈ Pn \ Cn, thenSθ = ∅.

We now introduce the following notation.

Notation 3.1.25 ∀θ ∈ Cn, let rTIf(θ) denote the radius of the largest open ball inf(Cn) cen-
tered aboutf(θ) contained inSθ:

rTIf(θ) = sup{ε ≥ 0 : ∀ϕ ∈ f(Cn), ||ϕ− f(θ)||R ≤ ε⇒ ϕ ∈ Sθ}. (3.51)

We have the following theorem.

Theorem 3.1.26

A setΩ ⊂ Pn is time-invariant strongly robust⇔ Ω ⊂ Cn andf(Ω) ⊂
⋂
θ∈Ω

Sθ. (3.52)

Proof: from Definition 3.1.10, Ω ⊂ Pn is time-invariant strongly robust if and only ifΩ ⊂ Cn
and ∀θ, θ′ ∈ Ω, f(θ) stabilizes θ′. This is equivalent to say that ∀θ, θ′ ∈ Ω, f(θ′) ⊂ Sθ,
equivalently ∀θ ∈ Ω, f(Ω) ⊂ Sθ.

Theorem 3.1.26 leads to the following corollary.

Corollary 3.1.27 LetΩ be a set of systems inCn. And letr(f(Ω)) denote the radius of the
largest sphere of controllers inf(Cn) contained inf(Ω). We have the following results.
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i. If r(f(Ω)) ≤ 1
2 minθ∈Ω r

TI
f(θ) thenΩ is time-invariant strongly robust, whererTIθ is

defined in Notation 3.1.25.

ii. If Ω is time-invariant strongly robust, thenr(f(Ω)) ≤ 1
2 minf∈∂(f(Ω)) d

TI

θ , where

∂(f(Ω)) is the boundary ofΩ andd
TI

θ = maxϕ∈Sθ
||ϕ − f(θ)||, ∀θ ∈ Cn, whereSθ

is defined in Definition 3.1.24.

Proof: the proof is similar to the proof of Corollary 3.1.22.

3.2 Strong robustness measures

Although Theorem 3.1.21 and Theorem 3.1.26 (respectively Corollary 3.1.22 and Corollary
3.1.27) give some theoretical tests to check whether a given set of systems in Cn is strongly
robust (respectively time invariant strongly robust) or not, the involved quantities rθ, dθ (re-

spectively rTIf(θ), d
TI

θ ) and their min/max values are not easy to compute.
Over the last decade the analysis of the classical robustness notion and the issue of robust-
ness measures for linear systems under complex and real perturbation received a good deal
of attention [37], [51], [52]. In this context, the concept of structured stability radius [52] has
been defined in the case of real or complex perturbations and an algorithm is given in [50] for
the computation of this radius in the complex case. In this section, our aim is to exploit some
of these results so as to express strong robustness measures using the well-studied notion of
structured stability radius.

3.2.1 Structured stability radii and related notions

Real structured stability radius

The real stability radius of a Schur matrix under structured perturbation is defined as follows
[51].

Definition 3.2.1 (Real structured stability radius) LetM ∈ R
N×N denote a strictly Schur

stable matrix. The real stability radius ofM with respect to the perturbation structure
(D,E) ∈ R

N×1 × R
1×N , is defined by [51]:

rR(M,D,E)=inf{||∆||R : D ∈ R
1×N ,M+D∆E is not Schur stable}, (3.53)

where||.||R denotes the matrix norm inR1×N .

We have the following result.

Result 3.2.2 ∀θ ∈ Cn, rTIf(θ) = rR(A(θ) + B(θ)f(θ), B(θ), I2n−1) whereI2n−1 is the unit

matrix inR
(2n−1)×(2n−1) andrR(A(θ)+B(θ)f(θ), B(θ), I2n−1) is given in Definition 3.2.1

andrTIf(θ) in notation 3.1.25.
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Proof: rTIf(θ) can be expressed as follows

rTIf(θ)= sup
ϕ∈f(Cn)

{||ϕ−f(θ)||R : A(θ)+B(θ)ϕ is strictly Schur stable}, or:

rTIf(θ) = inf
ϕ∈f(Cn)

{||ϕ− f(θ)||R : A(θ) +B(θ)ϕ is not Schur stable }, i.e.,

rTIf(θ) = inf{||ϕ− f(θ)||R : ϕ ∈ R
2n−1, A(θ) +B(θ)f(θ) +B(θ)(ϕ− f(θ))

is not Schur stable}.

Therefore, rTIf(θ) = rR(A(θ) +B(θ)f(θ), B(θ), I2n−1).

Complex structured stability radius

The complex stability radius of a Schur matrix under structured perturbation is defined as
follows [51].

Definition 3.2.3 (Complex structured stability radius) LetM ∈ R
(2n−1)×(2n−1) denote

a strictly Schur stable matrix. The complex stability radius ofM with respect to the pertur-
bation structure(D,E) ∈ R

(2n−1)×1 × R
1×(2n−1) is defined by [51]:

rC(M,D,E) = inf{||∆||C : D ∈ C
1×(2n−1),M +D∆E is not Schur stable}, (3.54)

where||.||C denotes the matrix norm inC1×(2n−1).

Remark 3.2.4 It is shown in [51] that the complex stability radius defined in Definition
3.2.3 does not change if the perturbation class is extended from static linear to the wider class
of time-varying perturbations, whereas the real stability radius defined in Definition 3.2.1
depends on the specific perturbations class considered.

Property 3.2.5 For all θ0 ∈ Cn, rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1) > 0

Proof: the proof of Property directly follows from Definition 3.2.3. Indeed consider a system
θ0 ∈ Cn. Thus from Assumption 2.1.13, we have that

A(θ0) +B(θ0)f(θ0) is strictly Schur stable. (3.55)

Now suppose that rC(A(θ0) + B(θ0)f(θ0), B(θ0), I2n−1) = 0. Using Definition 3.2.3, this
implies that A(θ0) + B(θ0)f(θ0) + B(θ0)02n−1 is not Schur stable, denoting by 02n−1 the
zero matrix in R

(2n−1)×1. This result contradicts (3.55). This concludes the proof of Prop-
erty 3.2.5.

3.2.2 Structured stability radii and strong robustness

We now exploit the results in Section 3.2.1 to establish strong robustness measures. We first
show how real structured stability radius and time-invariant strong robustness are connected.
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Real structured stability radius and time-invariant strong robustness

From Theorem 3.1.26 we obtain the following result.

Corollary 3.2.6 For any setΩ ⊂ Cn, if ∀θ, θ′ ∈ Ω,

||f(θ)− f(θ′)||R ≤ rR(A(θ) + b(θ)f(θ), B(θ), I2n−1), (3.56)

thenΩ is time-invariant strongly robust.

Proof: for a given set Ω ∈ Cn, suppose that (3.56) holds. Therefore, ∀θ, θ′ ∈ Ω,

||f(θ′)− f(θ)||R ≤ rR(A(θ) +B(θ)f(θ), B(θ), I2n−1) ≤ rTIf(θ)

hence ∀θ, θ′ ∈ Ω, f(Ω) ∈ Sθ. Theorem 3.1.26 implies that S is time-invariant strongly
robust.

Complex structured stability radius and strong robustness

We now show how the notions of complex structured stability radius and strong robustness
are connected. We first introduce the following definition.

Definition 3.2.7 For any systemθ ∈ Cn, we denote byB(θ) the ball of matrices inR1×(2n−1)

centered in f(θ) with radius the complex stability radius
rC(A(θ)+B(θ)f(θ), B(θ), I2n−1), whereI2n−1 is the unit matrix inR(2n−1)×(2n−1). More
precisely, denoting byf(Cn) the set of controllers associated with systems inCn, we have:

B(θ) = {ϕ ∈ f(Cn) : ||f(θ))− ϕ||R ≤ rC(A(θ) +B(θ)f(θ), B(θ), I2n−1)} (3.57)

We have the following result:

Theorem 3.2.8 For a given setΩ ⊂ Cn, if f(Ω) ⊂
⋂

θ∈Ω B(θ), thenS is strongly robust,
whereB(θ) is defined in(3.57).

Proof: suppose Ω ⊂ Cn to be such that f(Ω) ⊂
⋂

θ∈Ω B(θ). Then ∀θ ∈ Ω, and for all
sequence {θ(k)}k∈N ⊂ Ω, we have

||f(θ(k))− f(θ)||R ≤ rC(A(θ) +B(θ)f(A(θ), B(θ)), B(θ), I2n−1). (3.58)

Therefore, using Remark 3.2.4, ∀θ ∈ Ω, and for all sequence {θ(k)}k∈N ⊂ Ω, the closed-
loop time-varying system with system matrix

A(θ) +B(θ)f(θ) +B(θ)(f(θ(k))− f(θ)) = A(θ) +B(θ)f(θ(k)) (3.59)

is asymptotically stable, meaning that the time varying system defined by (3.7) is asymptoti-
cally stable, for all θ ∈ Cn. Hence it follows from Definition 3.1.2 that Ω is strongly robust.

Then, Theorem 3.2.8 yields the following result.
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Theorem 3.2.9 For any setΩ ⊂ Cn, if ∀θ, θ′ ∈ Ω,

||f(θ)− f(θ′)||R ≤ rC(A(θ) +B(θ)f(θ), B(θ), I2n−1), (3.60)

thenS is strongly robust.

Proof: suppose that (3.60) holds for a given set Ω ⊂ Cn. Then ∀θ, θ′ ∈ Ω, f(θ′) ∈ B(θ).
Hence, from Theorem 3.2.8, Ω is strongly robust.

Theorem 3.2.9 yields the following corollary.

Corollary 3.2.10 Let Ω denote a subset ofCn and suppose that there exists a ballΣ of
controllers in the set of controllers associated with systems inΩ such that

f(Ω) ⊂ Σ, i.e.,∀θ ∈ Ω, f(θ) ∈ Σ. (3.61)

Denoting byr(Σ) the radius ofΣ, if

r(Σ) ≤ 1
2
min
θ∈Ω

rC(A(θ) +B(θ)f(θ), B(θ), I2n−1), (3.62)

thenΩ is strongly robust.

Proof: the proof of Corollary is similar to the proof of i. in Theorem 3.1.21. Let Ω ⊂ Cn
and suppose that there exists a ball Σ in f(Cn such that (3.61) holds. Suppose that (3.62) is
satisfied. Then, for any controllers ϕ, ϕ′ in Σ, we have that

||ϕ− ϕ′||R ≤ 2r(Σ) ≤ min θ ∈ ΣrC(A(θ) +B(θ)f(θ), B(θ), I2n−1). (3.63)

From (3.61), ∀θ ∈ Ω, we have that f(θ) ∈ Σ. Hence (3.63) implies that

||f(θ)− f(θ′)||R ≤ rC(A(θ) +B(θ)f(θ), B(θ), I2n−1),∀θ, θ′ ∈ Ω. (3.64)

Hence (3.60) is satisfied. Corollary 3.2.10 hence follows from Theorem 3.2.9.

Remark 3.2.11 Theorem 3.2.9 has the great advantage that the problem of checking if a
given set of systems in Cn is strongly robust (which a priori involves time-varying controllers)
is reduced to a test involving time-invariant controllers only. Therefore, the characterization
of strongly robust sets has been significantly simplified.

3.2.3 Existence of non-trivial strongly robust sets of systems

Before going further in the characterization of strongly robust sets of systems, we now focus
on the issue of existence of non-trivial strongly robust sets, i.e., strongly robust sets of systems
that are not reduced to a single point. We have the following result:

Theorem 3.2.12 (Existence of strongly robust open sets of systems in Cn) Around any sys-
temθ0 ∈ Cn there exists an open strongly robust neighborhood of systems inCn.
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Proof: let θ0 ∈ Cn. Let us introduce the function:

Γ : ε ∈ [0,∞[→ Γ(ε) = min
θ:||θ−θ0||≤ε

rC(A(θ) +B(θ)f(θ), B(θ), I2n−1), (3.65)

where rC(A(θ) +B(θ)f(θ), B(θ), I2n−1) is defined in Definition 3.2.3.
It follows from the continuity of the complex stability radius [51] that Γ is continuous. Now,
Property 3.2.5 implies that rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1) > 0. Moreover, we have
that for any system θ which belongs to Pn Cn, rC(A(θ) + B(θ)f(θ), B(θ), I2n−1) = 0.
Hence, we have

Γ(0) = rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1) > 0 and lim
x→∞

Γ(x) = 0, (3.66)

It follows from the continuity of Γ and (3.66) that there exists x0 > 0 such that:

x0 ≤
Γ(0)
4

=
rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1)

4

Γ(x0) ≥
Γ(0)
2

=
rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1)

2
. (3.67)

Now, let B0 denote the open ball of controllers in f(Cn) with radius x0 and center f(θ0). It
follows from (3.67) that the radius r(B0) of B0 is such that:

r(B0) = x0 ≤
rC(A(θ0) +B(θ0)f(θ0), B(θ0), I2n−1)

4

≤ 1
2
Γ(x0)

=
1
2

min
θ:||θ−θ0||≤x0

rC(A(θ) +B(θ)f(θ), B(θ), I2n−1), (3.68)

Now, using continuity of the map f on Cn, we have that: ∃ε > 0 such that if ||θ − θ′||R ≤ ε,
for θ, θ′ ∈ Cn, then ||f(θ)−f(θ′)||R ≤ r(B0). Hence there exists an open ball Ω0 of systems
in Cn with center θ0 and radius min(ε, x0) > 0 such that f(Ω0) ⊂ B0 and (3.68) implies that

r(B0) ≤
1
2
min
θ∈Ω0

rC(A(θ) +B(θ)f(θ), B(θ), I2n−1). (3.69)

Finally, according to Corollary 3.2.10, (3.69) implies that Ω0 is strongly robust. This con-
cludes the proof of Theorem 3.2.12.

Remark 3.2.13 In the proof of Theorem 3.2.12, the Assumption that the map f is continuous
plays a crucial role. This motivates the continuity assumption in Assumption 2.1.13.

3.3 Testing strong robustness

The purpose in this section is to establish some tests that allow to check whether a given set
in Cn enjoys the stability notions previously introduced in the previous section.
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3.3.1 Testing controllability

A necessary condition that a set of systems in Pn has to satisfy in order to be strongly robust
is to be contained in the set of controllable systems. In this subsection we are concerned with
the following problem: given a set of systems Ω ⊂ Pn, construct a sufficient test to check
whether Ω is a subset of Cn or not. As a first approach to this problem, we now go back to
the basic properties of controllable linear systems.

Property 3.3.1 A systemθ ∈ Pn is controllable if and only if any of the following statements
holds:

i. A(θ),B(θ) given in(3.18) and (3.19) satisfy [93]:

rank([A(θ)− λI2n−1B(θ)]) = 2n− 1,∀λ ∈ C; (3.70)

ii. A(θ),B(θ) given in(3.18) and (3.19)satisfy

min
λ∈C

σ([A(θ)− λI2n−1 B(θ)]) > 0, (3.71)

whereσ([A(θ) − λI2n−1 B(θ)]) denotes the smallest singular value of the Hautus
matrix ([A(θ)− λI2n−1B(θ)]) [38];

iii. rank(Sylv(A(θ), B(θ))) = 2n−1 [93], whereSylv(A(θ), B(θ)) denotes the Sylvester
matrix given by:

Sylv(A(θ), B(θ)) =




a0 a1 · · · 1 0 · · · 0

0 a0 · · · an−1 1
. . .

...
...

. ..
. . . 0

0 · · · 0 a0 a1 · · · 1
... b0 b1 · · · bn−1
... b0 b1 · · · bn−1 0

0 ··· ··· ··· . . .
b0 b1 · · · bn−1 0 · · · 0




∈ R
(2n−1)×(2n−1).

(3.72)

From these considerations, we derive the following result.

Property 3.3.2 A setΩ ⊂ Pn is a subset ofCn if and only if any of the following statements
holds:

i’. A(θ), B(θ) given in(3.18) and (3.19) satisfy

rank([A(θ)− λI2n−1B(θ)]) = 2n− 1,∀λ ∈ C,∀θ ∈ Ω; (3.73)

ii’. A(θ), B(θ) given in(3.18) and (3.19) satisfy

min
λ∈C

σ([A(θ)− λI2n−1 B(θ)]) > 0,∀θ ∈ Ω, (3.74)

whereσ([A(θ) − λI2n−1 B(θ)]) denotes the smallest singular value of the Hautus
matrix ([A(θ)− λI2n−1B(θ)]) ;
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iii’. The Sylvester matrixSylv(A(θ), B(θ)) given in(3.72) has full-row rank∀θ ∈ Ω.

Unfortunately, the characterization of controllability given in i’. is difficult to implement in
finite precision [88]; indeed it is even not clear how to numerically verify whether a given
system θ is controllable through (3.70). Hence checking whether a set is a subset of the set
of controllable systems using i’. is not thinkable. Then, with respect to ii’., it has been shown
[38] that

σ([A(θ)− λI2n−1 B(θ)]) = min
∆A,∆B

{||∆A,∆B || :

rank(Sylv(A(θ) + ∆A, B(θ) + ∆B)) �= 2n− 1}. (3.75)

where (∆A,∆B) ∈ R
(2n−1)×(2n−1) × R

2n−1. In other words, (3.75) means that σ([A(θ)−
λI2n−1 B(θ)]) is nothing but the distance from the pair of matrices A(θ), B(θ) to the set
of uncontrollable pairs of matrices in R

(2n−1)×(2n−1) × R
2n−1. This leads to the following

result:

Theorem 3.3.3 LetΩ denote a set of systems inPn and letθ∗ be any element inΩ. If (3.74)
holds forθ = θ∗, and if

||(A(θ), B(θ))− (A(θ∗), B(θ∗))|| ≤ σmin([A(θ∗)− λI2n−1 B(θ∗)]),∀θ ∈ Ω, (3.76)

thenΩ ⊂ Cn.

Hence, Theorem 3.3.3 may provide a method to check whether a set Ω is subset of Cn or not,
choosing θ∗ to be for instance the center of a ball of systems outer-bounding Ω . However,
the function to be minimized in (3.74) is not convex and may have as many as 2n − 1 or
more local minima. Moreover it is not clear just how many local minima they are for a given
system θ [24]. Many algorithms have been proposed in the literature to compute local minima
of the function

λ ∈ C �→ Unc(θ) = σ([A(θ)− λI2n−1 B(θ)]), (3.77)

for a given system θ ∈ Pn ([20], [24], [113]), but have no guarantee of finding Unc(θ) with
any accuracy, since Unc(θ) is the global minimum. Furthermore, methods that search for the
global minimum ([24], [47], [36]) sometimes offer this guarantee but require a computation
time that is inversely proportional to (Unc(θ))2, prohibitively large for nearly uncontrollable
systems. For this reason, numerically tractable methods for estimating Unc(θ) for a given
system θ can be found in [44]. On one hand, these algorithms require much smaller com-
putation times, but on the other hand, the author shows that if Unc(θ) is very tiny, then its
estimates by the proposed algorithms in finite precision could be much larger than the exact
value. Further in Chapter 5, we will suppose that the true system to be controlled is unknown,
hence we have no information about its controllability level. This implies that the case where
the system is close to uncontrollability will not a priori be neglected in our framework.
Therefore, for our purposes, none of these reported methods based on i’. and ii’. is com-
pletely satisfactory. Alternatively, let us now exploit iii’. to derive a sufficient test to check
whether a bounded set Ω ⊂ Pn is subset of Cn or not. First, we have the following theorem
[53].
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Theorem 3.3.4 (Interval matrix and non-singularity) Let S = Ŝ+[−∆,∆] be an interval
matrix inR

N×N , i.e.,

S1 ∈ S ⇔ Si,j −∆i,j ≤ S1i,j ≤ Si,j +∆i,j ,∀i, j ≤ N, (3.78)

where,∀M ∈ R
N×N , Mi,j denotes the entry ofM in the ith row andjth column. For all

M ∈ R
N×N , let σ(M), σ(M) denote the smallest and the largest singular values ofM

respectively. Thenσ(∆) < σ(Ŝ) implies thatS is non-singular.

Hence, suppose that Ω ⊂ Pn is a bounded set of systems. Recall that any element θ ∈ Pn is
of the form:

θ = (an−1, · · · , a0, bn−1, · · · , b0)T . (3.79)

Since Ω is bounded, we can enclose Ω in a symmetric outer-bounding polytopic set Ω̃ of
systems in Pn, defined by known parameters {a∗i ,∆ai, b∗i ,∆bi}i=0,··· ,n−1 in R×R+×R×
R+ such that

Ω̃ = {θ : a∗i −∆ai ≤ ai ≤ a∗i +∆ai, b∗i −∆bi ≤ bi ≤ b∗i +∆bi}. (3.80)

Now, for any element θ in Ω̃ we can form the Sylvester S(θ) matrix given in (3.72). We have
that

S(θ) ∈ S∗ + [−∆,∆],∀θ ∈ Ω̃, (3.81)

where
S∗ = S(θ∗) = S(a∗n−1, · · · , a∗0, b∗n−1, · · · , b∗0), (3.82)

and
[−∆,∆] = {S ∈ R

(2n−1)×(2n−1) : −∆i,j ≤ Si,j ≤ ∆i,j}, (3.83)

where

∆i,j = ∆ak if S(θ∗)i,j = ak, k = 0, · · · , 2n− 1,
∆i,j = ∆bk if S(θ∗)i,j = bk, k = 0, · · · , 2n− 1
∆i,j = 0 if S(θ∗)i,j = 0.

Now, applying Theorem 3.3.4, we obtain the following result.

Theorem 3.3.5 LetΩ be a subset ofPn andΩ̃ a known symmetric orthotopic set of systems
outer-boundingΩ defined by{a∗i ,∆ai, b∗i ,∆bi}i=0,··· ,n−1 according to(3.80). Define the
interval Sylvester matrixS∗ + [−∆,∆] where the midpoint matrixS∗ and the∆-matrix are
given in(3.82) and (3.83) respectively. Then

σ(∆) < σ(S∗) (3.84)

implies thatΩ ⊂ Cn.

Proof The proof directly follows from (3.81), property iii’. and Theorem 3.3.4.
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3.3.2 A test for strong robustness involving complex structured stability
radius

In this subsection, we consider subsets in Cn and construct a test to check whether this set is
strongly robust or not.
The sufficient test for strong robustness of a given set Ω in Cn given in Theorem 3.2.9 estab-
lishes a link between the maximal distance between controllers in f(Ω) and the minimum of
the complex structured stability radii

rC(A(θ) +B(θ)f(θ), B(θ), I2n−1) (3.85)

defined in Definition 3.2.3 over the set Ω. The complex structured stability radius of a Schur
matrix under structured perturbations of type (3.85) plays an important role in robustness
issues in feedback control analysis [51] and its computation attracted a consequent attention
[51], [52], [50], [73], [74]. In particular, we refer to [52] where the following Proposition is
proved.

Proposition 3.3.6 Let (M,D,E) ∈ R
N×N × R

N×l × R
q×N . For anyρ > 0, define the

matrix pencilWρ is given by

Wρ(λ) =
[
M − λI −λDDT

ρ2ETE I − λMT

]
, λ ∈ C (3.86)

whereσ(Wρ) denotes the spectrum of the matrix pencilWρ. Then we have

rC(M,D,E) = min{ρ ∈ R+ : σ(Wρ) ∩ {s ∈ C : |s| = 1} �= ∅}. (3.87)

From Proposition 3.3.6 we derive the following result.

Theorem 3.3.7 LetΩ ⊂ Cn. For anyθ ∈ Ω and anyρ > 0 define

W θ
ρ (λ) =

[
A(θ) +B(θ)f(θ)− λI −λB(θ)(B(θ))T

ρ2I I − λ(A(θ) +B(θ)f(θ))T
]
, λ ∈ C. (3.88)

If for all θ, θ′ ∈ Ω we have

||f(θ)− f(θ′)|| < min{ρ ∈ R+ : σ(W θ
ρ ) ∩ {s ∈ C : |s| = 1} �= ∅}, (3.89)

whereσ(W θ
ρ ) denotes the spectrum of the matrix pencilW θ

ρ , thenΩ is strongly robust.

Proof: Let Ω ⊂ Cn. Suppose that (3.89) is satisfied ∀θ, θ′ ∈ Ω. Hence using (3.87) with
A = A(θ) +B(θ)f(θ), D = B(θ) and E = I2n−1, we obtain that

||f(θ)− f(θ′)|| < rC(A(θ) +B(θ)f(θ), B(θ), I2n−1),∀θ, θ′ ∈ Ω. (3.90)

Hence it follows from Theorem 3.2.9 that Ω is strongly robust.

By definition, strong robustness of a set Ω ⊂ Cn requires that the time-varying controller
based on any time-varying sequence of systems in Ω yields an asymptotically stable closed-
loop system when applied to any system to Ω (see Definition 3.1.2). An interesting achieve-
ment of Theorem 3.3.7 is that the time-variation aspect does not appear anymore. Indeed,
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the condition in Definition 3.1.2 on the set of all possible time-varying closed-loop systems
constructed over the set Ω described by

x(k + 1) = [A(θ) +B(θ)f(θ(k))]x(k),∀θ ∈ Ω,∀{θ(k)} ⊂ Ω (3.91)

has been replaced in (3.89) by a condition on the set of all possible time-invariant closed-loop
systems constructed over Ω described by

x(k + 1) = [A(θ) +B(θ)f(θ′)]x(k)∀θ, θ′ ∈ Ω. (3.92)

3.3.3 Strong quadratic robustness and Linear Matrix Inequalities in the
case of pole placement

Let us now characterize strongly quadratically robust sets in Cn by means of Linear Matrix
Inequalities (LMI’s). We previously saw that strong quadratic robustness is characterized
as follows (Definition 3.1.8). A set Ω ⊂ Cn is strongly quadratically robust if there exists
a matrix K = KT > 0 in R

(2n−1)×(2n−1) such that for any system θ ∈ Ω and for any
sequence of systems {θ(k)}k∈N ⊂ Ω, the following matrix inequality is satisfied:

[A(θ) +B(θ)f(θ(k))]TK[A(θ) +B(θ)f(θ(k))]−K + I < 0. (3.93)

However, (3.93) places an infinite number of constraints on Ω. It is our purpose in this
section to make additional assumptions on the way systems in Cn are described and also on
the control objective, so as to convert the strong robustness test given in Theorem 3.3.7 into
a problem that is numerically tractable. To this effect, we first recall the notion of controller
canonical form of a controllable system. make the following assumption.

Definition 3.3.8 (Controller canonical form) Consider a systemθ ∈ Cn. Its controller
canonical form is defined as follows [93]:

x(k + 1) = Ac(θ)x(k) +Bc(θ)u(k) (3.94)

y(k) = Cc(θ)x(k),

whereAc(θ) ∈ R
n×n,Bc(θ) ∈ R

n andCc(θ) ∈ R
1×n are given by:

Ac(θ) =




0 1 0 · · · 0
...

.. .
.. .

. . .
...

...
.. .

. . . 0
0 · · · · · · 0 1
−a0 −a1 · · · · · · −an−1



Bc(θ) =




0
0
...
0
1


 (3.95)

Cc(θ) =
[
b0 b1 · · · bn−1

]
, (3.96)

where the coefficientsai, bi are the coefficients parameterizing the systems inCn given by

θ = (an−1, a0, · · · , bn−1, · · · , b0)T . (3.97)

Now we introduce the following notation.
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Notation 3.3.9 (Set Σn of systems in canonical form in Cn) LetΣn ⊂ Cn be the set of sys-
tems inCn that assume a controller canonical form(3.94) where the state vectorx(k) is
measurable.

Notation 3.3.10 (Polyhedral set of systems in canonical form in Σn) LetSn ⊂ Σn be the
set of systems inΣn whose coefficientsai andbi satisfy bounds according to

ai ≤ ai ≤ ai andbi ≤ bi ≤ bi, ∀i ≤ n− 1. (3.98)

for known values of the boundsai, ai, bi and bi. Such a set is called a polyhedral set of
systems inΣn.

We now make the following assumption.

Assumption 3.3.11 (Pole placement) The control objective amounts in locating the closed-
loop poles in the roots of a given characteristic polynomialp(ξ) = ξn +

∑n−1
i=0 piξ

i with
known real coefficientspi. It is such that for anyθ ∈ Σn, we have that the controller uniquely
defined according to Assumption 3.3.11 can be (uniquely) represented by the feedback law

u(k) = f(θ)x(k) (3.99)

wheref : Σn → R
1×n is defined by

f(θ) =
[
a0 − p0 . . . an−1 − pn−1

]
. (3.100)

Remark 3.3.12 The use of control canonical forms implies that f(θ) given in (3.100) does
not depend on the coefficients bi. Note that the control objective in Assumption 3.3.11 satis-
fies Assumption 2.1.13 as we shown in Chapter 2, Section 2.1.3. At first sight, the control law
3.99 does not exactly have the form of the control law given in Assumption 2.1.13. However,
choosing the i/s/o description of the system θ given in 2.1.4, we can show that the controller
f(θ) in (3.100) corresponds to a unique controller of the type 2.14, (2.13) satisfying Assump-
tion 2.1.13.

Now, given any pair of systems θ, θ′ ∈ Σn, we denote by (θ, f(θ′)) the closed loop system
defined by

x(k + 1) = Ac(θ) +Bc(θ)u(k) (3.101)

u(k) = f(θ′)x(k)

where the closed loop state evolution matrix Ac(θ) +Bc(θ)f(θ′) takes the form:

Ac(θ)+Bc(θ)f(θ′)=




0 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1

(a′0 − a0)− p0 · · · · · · (a′n−1 − an−1)− pn−1




(3.102)
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For i = 0, . . . , n − 1, let Mi denote the n × n matrix which is zero except at its (n, i)
entry where it is 1. Let Mn = Ac(θ0) + Bc(θ0)f(θ0) denote the nominal closed loop
desired matrix. Then, when θ and θ′ range over Sn defined in Notation 3.3.10, the matrix
Ac(θ) +Bc(θ)f(θ′), given in (3.102), is of polyhedral form:

M(δ) := Ac(θ) +Bc(θ)f(θ′) =Mn +
n−1∑
i=0

δiMi, (3.103)

where, for i = 0, . . . , n− 1, the parameter δi assumes its values in the interval:

δi := ai − ai ≤ δi ≤ ai − ai := δi (3.104)

Let δ = col(δ0, · · · , δn−1) be the uncertainty vector, and define

∆0 := {δ = col(δ0, · · · , δn−1) | δi = ±δi}, (3.105)

∆ := {δ = col(δ0, · · · , δn−1) : |δi| ≤ δi}. (3.106)

∆0 is the finite set consisting of all ‘corner points’ of the uncertainty region (3.104) and ∆ is
the convex hull of ∆0. The set of all possible closed-loop state-evolution matrices is defined
by the affine setM(δ) where δ ∈ ∆. We have the following result:

Theorem 3.3.13 (Strong quadratic robustness: a finite set of LMI’s) The polyhedral sub-
setSn ⊂ Cn defined in Notation 3.3.10 is strongly quadratically robust if and only if there
existsK = KT > 0 such that

[M(δ)]TKM(δ)−K + I < 0, ∀δ ∈ ∆0 (3.107)

where∆0 is defined by(3.106).

Proof: to prove the necessity part in Theorem 3.3.13, we go along the following lines. Sup-
pose Sn is as specified. Define ∆0 according to (3.106). If there exists K = KT > 0 such
that (3.107) holds for any δ ∈ ∆0, then convexity of the function
hx(δ) := xT ([M(δ)]TKM(δ)−K)x for any x ∈ R

n implies that [111]

[M(δ)]TKM(δ)−K + I < 0, ∀δ ∈ ∆ (3.108)

Now, define V : R
n → R according to V (x) = xTKx. We then claim that V defines

a Lyapunov function for any of the interconnected systems. Indeed, V (·) is non-negative
and for any system θ, θ′ ∈ Sn, the interconnection (θ, f(θ′)) takes the state-space form
x(k + 1) =M(δ)x(k) withM(δ) defined by (3.103), where δ ∈ ∆. Hence we have that

V (x(k + 1)) = xT (k)M(δ)TKM(δ)x(k)

< x(k)TKx(k) = V (x(k))

for any δ ∈ ∆. Therefore, it follows from Definition 3.1.8 that Sn is strongly quadratically
robust. Conversely, if no such positive definite matrix K exists, from Definition 3.1.1, there
is no quadratic stability of the parameterized closed-loop system and hence Sn is not strongly
quadratically robust.This concludes the proof of Theorem 3.3.13.

We would like to emphasize the following consequences of Theorem 3.3.13.
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1. Theorem 3.3.13 involves a finite numberof LMI’s (at most 2n LMI’s). Therefore,
the strong quadratic robustness characterization, placing a priori an infinite number of
constraints on the set of systems to be tested, has been converted into a numerically
tractable test.

2. In an adaptive control framework, the parameters δi range over the diameter of the
uncertainty region |δi| ≤ δi, for i = 0, · · · , n− 1. Hence, it is an interesting problem
to guarantee that the intervals [δi, δi] will be uniformly decreasing as function of the
iteration time of an adaptive algorithm. This amounts to reducing the uncertainty
diameters ai − ai, i = 0, . . . , n− 1. This issue is discussed in Chapter 4.

3. For given uncertainty intervals δi := ai − ai, the feasibility test of Theorem 3.3.13
depends on the desired pole locations defined by the characteristic polynomial p. This
is in accordance with Remark 3.1.15 and shows that some pole locations might be
better suited to obtain strong robustness than others.

4. Because of the assumption that the state vector x(k) in (3.94) is measurable, the result
presented in Theorem 3.3.13 only holds for a restricted class of polyhedral sets of
systems in Cn.

3.3.4 Time-invariant strong robustness and pole placement:
a Kharitonov-like test

In this section our purpose is to construct a test to check if a given set Ω ⊂ Cn is time-
invariant strongly robust with respect to pole placement in some specified stable poles. It
follows from Definition 3.1.10 that a set Ω ⊂ Cn is time invariant strongly robust if for any
systems θ, θ′ ∈ Ω, the closed-loop characteristic polynomial det(ξI −A(θ) +B(θ)f(θ′)) is
strictly Schur stable, where A(θ), B(θ) and f(θ′) are given in (3.18), (3.19) and Assumption
2.1.13 respectively. Hence checking time-invariant strong robustness of Ω comes to the same
than checking the Schur stability of the set of all polynomials det(ξI − A(θ) + B(θ)f(θ′))
when θ, θ′ describe Ω. Testing the Hurwitz or Schur stability of a family of polynomials
is a relevant question in many stability and robustness problems and led to a large body of
literature [22], [60], [57],[86], [85]. In particular, a significant interest has been focused on
the issue of Hurwitz stability of a polynomial interval which first appeared in [57], leading to
the celebrated Kharitonov’s theorem which we will recall further. Counterparts of this result
for testing Schur stability of a polynomial interval can be found in [86], [85], [60], [22] but
still suffer from a much higher computational complexity.
Using these results, our objective is now to express a sufficient test for time-invariant strong
robustness of bounded orthotopic sets of systems in Cn in the form of a a Kharitonov-like test
[26].
We first recall the Kharitonov’s Theorem to test the Hurwitz stability of interval polynomials
[57].

Theorem 3.3.14 (The Kharitonov’s Theorem in the continuous-time description)
For all N ∈ N, each member of the infinite family of polynomials

χ(ξ) = χ0 + χ1ξ + · · ·+ χNξ
N (3.109)
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with
χi ≤ χi ≤ χi, ∀i = 0, · · · , N, (3.110)

where(χi, χi)i=0,··· ,N are given constants, is strictly Hurwitz if and only if each of the four
Kharitonov polynomials

γ1(ξ) =χ0 + χ1ξ + χ2ξ2 + χ3ξ3 + χ4ξ4 + χ5ξ5 + χ6ξ6 + · · ·
γ2(ξ) =χ0 + χ1ξ + χ2ξ2 + χ3ξ3 + χ4ξ4 + χ5ξ5 + χ6ξ6 + · · ·
γ3(ξ) =χ0 + χ1ξ + χ2ξ2 + χ3ξ3 + χ4ξ4 + χ5ξ5 + χ6ξ6 + · · ·
γ4(ξ) =χ0 + χ1ξ + χ2ξ2 + χ3ξ3 + χ4ξ4 + χ5ξ5 + χ6ξ6 + · · ·

is strictly Hurwitz.

We consider orthotopic sets of systems, also called boxes of systems. These sets are defined
as follows.

Definition 3.3.15 (Boxes of systems in Cn) We call box of systems inCn any setIn ⊂ Cn
associated to the4n given constants{ai, ai, bi, bi}i=0,··· ,n−1 such that for all systemθ ∈ In,
the parametersai, bi given in(4.6) satisfy:

ai ∈ [ai, ai] andbi ∈ [bi, bi], ∀i = 0, · · · , n− 1. (3.111)

We consider pole placement in some pre-specified stable poles {αi}i∈N, |αi| < 1, ∀i. We
will use the following notation.

Notation 3.3.16 (Controllers) Any system inθ ∈ Cn is described by the input/output equa-
tion in discrete-time

y(k + 1) +
n−1∑
i=0

aiy(k + i− n+ 1) =
n−1∑
i=0

biu(k + i− n+ 1) (3.112)

and is associated to the polynomials given byA(ξ) = ξn + an−1ξn−1 + · · · + a0 and
B(ξ) = bn−1ξn−1 + · · ·+ b0.

For any systemθ ∈ Cn, its unique controllerf(θ) is identified with its parameter vector

f(θ) := (c0, · · · , cn−2, d0, · · · , dn−1)T ∈ R
2n−1. (3.113)

This controller is described by

u(k) +
n−2∑
i=0

ciu(k + i− n+ 1) =
n−2∑
i=0

diy(k + i− n+ 1). (3.114)

With the controller (3.114) we associate the polynomialsC(ξ) = ξn−1+cn−2ξn−2+ · · ·+c0
andD(ξ) = dn−2ξn−2 + · · ·+ d0.

We now introduce the following notation.
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Notation 3.3.17 (Characteristic polynomial) For any systemsθ, θ′ ∈ Cn, we denote by
χθ,f(θ′)(ξ) the characteristic polynomial of the closed-loop system defined by

x(k + 1) = A(θ)x(k) +B(θ)u(k) (3.115)

u(k) = f(θ′)x(k), (3.116)

whereA(θ),B(θ), f(θ′) andx(k) are defined in(3.18), (3.19), (3.6) and Assumption 2.1.13
respectively. Hence, we have

χθ,f(θ′)(ξ) = det(ξI − (A(θ) +B(θ)f(θ′))) (3.117)

= A(ξ)C(ξ) + B(ξ)D(ξ). (3.118)

whereA(ξ), B(ξ), C(ξ) andD(ξ), are defined in Notation 3.3.16. Hence∀θ, θ0 ∈ Cn, we
have

χθ,φ(θ0)(ξ) = (ξn +
n−1∑
i=0

aiξ
i)(ξn−1 +

n−2∑
i=0

c0i ξ
i) + (

n−1∑
i=0

biξ
i)(

n−1∑
i=0

d0i ξ
i). (3.119)

Denotingχθ,φ(θ0)(ξ) = ξ2n−1 +
2n−2∑
i=0

χiξ
i, (3.120)

we associate the polynomialχθ,φ(θ0)(ξ) with its coefficient vector

χ
θ,φ(θ0)

= (1, χ2n−2, · · · , χ0)T ∈ R
2n. (3.121)

The construction of a test to check whether a box of systems in Cn as defined in Definition
3.3.15 is time-invariant strongly robust or not is illustrated in Figure 3.5. It goes along the
following steps.

Algorithm 3.3.18 (Time invariant strong robustness: a sufficient Kharitonov-like test)

(1) Set of characteristic polynomials generated by a fixed controller: fix a system
θ0 ∈ In and characterize the set of characteristic polynomials associated with the set
of closed-loop systems {(θ, f(θ0))}θ∈In

:

Γθ0(In) = {χθ,f(θ0)(ξ), θ ∈ In} ⊂ R
2n[ξ] (3.122)

(2) Relation between Schur stability and Hurwitz stability: transform the set Γθ0(In)
into a set Γ̃θ0(In) ⊂ R

2n[ξ] defined by

Γ̃θ0(In) = {χ̃(ξ) := (ξ − 1)nχ(
ξ + 1
ξ − 1

) : χ(ξ) ∈ Γθ0(In)} (3.123)

In [13], it is proven that for any χ(ξ) ∈ Γθ0(In), χ(ξ) has all its zeros within the open
unit complex disc if and only if the associated polynomial χ̃(ξ) defined in (3.123) has
all its zeros in the open half complex plane.

(3) Closure box of In associated with a fixed controller: because the transformed set
Γ̃θ0(In) is in general not a box, define an outer bounding box of systems Γ̃+θ0(In) of
Γ̃θ0(In), called closure box of̃Γθ0(In).
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(4) Maximal closure box: generate the set
⋃

θ0∈In
Γ̃θ0(In) and compute an outer bound-

ing box Γ̃+(In) for this set. The box Γ+(In) is called the maximal closure box of In.

(5) Kharitonov’s test: apply the Kharitonov’s test given in Theorem 3.3.14 on the poly-
nomial interval Γ̃+(In). If the test is positive then any characteristic polynomial in
Γ̃+(In) is strictly Hurwitz stable, therefore any characteristic polynomial in Γ+(In)
is strictly Schur stable. Equivalently, the closed loop system (θ, f(θ0)) is asymptoti-
cally stable for any θ, θ0 ∈ In, consequently In is time invariant strongly robust.

ControllersSystems

Closed loop systems

P

In ⊂ R
2n

f(.)

f(In) ⊂ R
2n−1

f(θ0)P 0

χ
θ,f(θ0)

Γ̃+(In) ⊂ R
2n[ξ]

Γ̃+
θ0(In)

χ̃
θ,f(θ0)

Γ̃θ0(In)

Γθ0(In) ⊂ R
2n[ξ]

Figure 3.5: Strong robustness and boxes of systems, discrete time description.

These various steps are now discussed in more details. In the next discussions, In denotes a
given box of systems in Cn as defined in Definition 3.3.15.

Set of characteristic polynomials generated by a fixed controller

We suppose the system θ0 = (a0n−1, · · · , a00, b0n−1, · · · , b00)T ∈ In to be fixed. The known
desired closed loop characteristic polynomial is denoted by

χ0(ξ) =
2n−1∏
i=1

(ξ − αi), (3.124)

and is associated with its coefficient vector χ0. The controller based on θ0 is f(θ0) =
(c0n−2, · · · , c00, dn−2,0 · · · , d00)T defined as the unique solution of

χθ0,f(θ0)(ξ) = χ0(ξ). (3.125)
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according (3.119). The set Γθ0(In) of all characteristic polynomials generated by f(θ0) is
the set of polynomials {χθ,f(θ0)(ξ)}θ∈In

where χθ,f(θ0)(ξ) is defined by (3.119).

Relation between Schur stability and Hurwitz stability

Our ultimate goal is to use the Kharitonov’s Theorem for continuous systems to check the
stability of any characteristic polynomial χθ,f(θ0)(ξ), θ, θ0 ∈ In. Since we deal with systems
in discrete-time description, we first transform the problem of testing the Schur stability of a
polynomial into the problem of testing the Hurwitz stability of a related polynomial. We first
recall that any real polynomial p(ξ) = p0+ · · ·+ pNξN has all its zeros within the open unit
disc if and only if the polynomial p̃(ξ) = (ξ − 1)Np( ξ+1ξ−1 ) has all its zeros in the open-half
plane [13]. Therefore, the Schur stability of the polynomial described by (3.119) is equivalent
to the Hurwitz stability of

χ̃θ,f(θ0)(ξ) =(
n∑

i=0

ai(ξ + 1)i(ξ − 1)n−i)(
n−1∑
j=0

c0j (ξ + 1)j(ξ − 1)n−1−j)

+ (ξ − 1)(
n−1∑
k=0

b0k(ξ + 1)k(ξ − 1)n−1−k)(
n−1∑
l=0

d0l (ξ + 1)l(ξ − 1)n−1−l)

(3.126)

where an = 1 and c0n−1 = 0. This polynomial can be re-written as:

χ̃θ,f(θ0)(ξ) =
2n−1∑
i=0

χ̃iξ
i = (

2n−1∑
i=0

ãiξ
i)(

n−1∑
j=0

c̃0jξ
j) + (ξ − 1)(

n−1∑
k=0

b̃kξ
k)(

n−1∑
l=0

d̃0l ξ
l), (3.127)

where the coefficients ãi, b̃i, c̃i, d̃i are calculated according to [13] as follows. For the coeffi-
cients ãi we get:

[ãn, · · · , ã0] = [an, an−1, · · · , a0]Γn+1 (3.128)

where the (n+ 1)× (n+ 1) matrix Γn+1 = [γi,j ]i,j=1,··· ,n+1 is given by the formula

γi,j = γi,j+1 + γi−1,j+1 + γi−1,j , i = 2, · · · , n and j = n, · · · , 1,
subject to γi,n = 1, i = 1, · · · , n+ 1,

and where the element γ1,j is the binomial coefficient in µj in the expansion of (µ− 1)n for
j = 1, · · · , n + 1. The same result applies to the computation of b̃i, c̃i and d̃i. Denoting the
polynomial χ̃θ,f(θ0)(ξ) in Γ̃+(In) by

χ̃θ,f(θ0)(ξ) =
2n−1∑
i=0

χ̃iξ
i, (3.129)

we associate with χ̃θ,f(θ0)(ξ) its coefficient vector

χ̃
θ,f(θ0)

= (χ̃
θ,f(θ0),2n−2, · · · , χ̃θ,f(θ0),2n−1)

T ∈ R
2n. (3.130)

To conclude, for some given θ, θ0 ∈ In , the problem of checking the Schur stability of
the polynomial χθ,f(θ0)(ξ) has been transformed into checking the Hurwitz stability of the
related polynomial χ̃θ,f(θ0)(ξ) defined by (3.127).
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Closure box of In associated with a fixed system: definition

The closure box Γ̃+θ0(In) of In associated with θ0 is the outer bounding box of Γθ0(In)
defined by:

Γ+θ0(In) = (x2n−2, x2n−3, · · · , x0)T ∈ R
2n−1 : xi ∈ [Xi(θ0),Xi(θ0)]} (3.131)

where Xi(θ0) = min
θ∈In

χ̃θ,f(θ0),i and Xi(θ0) = max
θ∈In

χ̃θ,f(θ0),i. (3.132)

The set of boxes {Γ̃+θ0(In)}θ0∈In
is hence a set of parallel boxes.

Maximal closure box of In

The Maximal Closure Box Γ̃+(In) of In is defined as the minimal box Γ̃+(In) enclosing
the closure boxes Γ̃+θ0(In), ∀θ0 ∈ In:

Γ̃+(In) = {(x2n−2, x2n−3, · · · , x0)T ∈ R
2n−1 : xi ∈ [Xi,Xi]} (3.133)

where
Xi = min

θ0∈In

Xi(θ0) and Xi = max
θ0∈In

Xi(θ0). (3.134)

Combining (3.132) and (3.134) leads to

Xi = min
θ0∈In

{min
P∈In

χ̃θ,f(θ0),i} and Xi = max
θ0∈In

{max
θ∈In

χ̃θ,f(θ0),i}. (3.135)

Equivalently,

Xi = min
θ∈In

{ min
Y ∈f(In)

χ̃θ,Y,i} and Xi = max
θ∈In

{ max
Y ∈f(In)

χ̃θ,Y,i}. (3.136)

Our aim is to compute the dimensionsXi andXi of Γ̃+(In). To this end, we first compute a
minimal box enclosing f(In). Then, we compute the values for Xi and Xi using (3.136).

1. Computation of a box enclosing f(In): the problem consists in finding some conser-
vative bounds on the coefficients of the controller f(θ) when θ describes In. Equiv-
alently, our aim is to find the maximal variations induced on the coefficients ci, di of
the polynomials C(ξ) and D(ξ) such that the equality

A(ξ)C(ξ) + B(ξ)D(ξ) = χ0(ξ) (3.137)

holds, where the coefficients ai, bi of A(ξ) and B(ξ) belong to Ii = [ai, ai] and
Ji = [bi, bi] respectively for any i = 0, · · · , n− 1. (3.137) can be written as:

M.X = χ0 (3.138)

withM =
(
A B

)
and X =

(
C
D

)
(3.139)
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where A,B ∈ R
2n×n and C,D ∈ R

n are given by:

A =




1 0 0 0
an−1 1 0
an−2 an−1 1 0

... an−2 an−1 1

a0
... an−2 an−1

0 a0
... an−2

...
...

...
0 0 · · · · · · a0




and B =




0 0 0 0
bn−1 1 0
bn−2 bn−1 1 0

... bn−2 bn−1 1

b0
... bn−2 bn−1

0 b0
... bn−2

...
...

...
0 0 · · · · · · b0




CT =
(
1 cn−2 cn−3 · · · c0

)
, DT =

(
dn−1 dn−2 · · · d0

)
and where χ0 = (1, χ02n−2, · · · , χ00)T ∈ R

2n is defined by (3.124). The problem is
now the following: if the coefficients ofM vary within Ii, Ji for i = 0 · · ·n−1, what
is the set described by the solutions X of (3.138)?

LetM0 denote the matrix of the form (3.139), associated with a nominal system θ0 ∈
In. Let M0 + δM denotes the perturbed matrix corresponding to M0, where δM
can be all admissible perturbation matrix so that the coefficients a0i + δai, b

0
i + δbi

stay in the segments Ii, Ji respectively for i = 0, · · · , n − 1. We denote by M the
corresponding perturbation set described by δM . We call X0 + δX the controller
associated to the perturbed system leading to the matrixM0 + δM . We have then:

M0.X0 = χ0 (3.140)

and (M0 + δM).(X0 + δX) = χ0. (3.141)

Subtracting (3.140) from (3.141) yields:

(M0 + δM).δX = −δM.X0 (3.142)

Now, since In contains only controllable systems, we know that M0 + δM is non-
singular for all δM ∈ D. Hence (3.142) can be written as follows:

δX = −(M0 + δM)−1.δM.X0 (3.143)

Hence:
‖δX‖2 = ‖(M0 + δM)−1.δM.X0‖2 (3.144)

Therefore:
‖δX‖2 ≤ ‖(M0 + δM)−1‖I2.‖δM‖I2.‖X0‖2 (3.145)

where ‖.‖I2 denotes the 2-norm induced norm in R
2n×2n. Consequently:

‖δX‖2 ≤ σ{(M0 + δM)−1}.σ{δM}.‖X0‖2 (3.146)

where σ(T ) denotes the largest eigenvalue of the matrix TTT . Then, since

σ{(M0 + δM)−1} = 1
σ{(M0 + δM)} , (3.147)
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with σ(T ) denoting the smallest eigenvalue of TTT , (3.146) yields:

‖δX‖2 ≤
σ{δM}.‖X0‖2
σ{(M0 + δM)} (3.148)

Now, using the two properties

σ{(M0 + δM)} ≥ σ(M0)− σ(δM) (3.149)

and
σ{δM} ≤

√
2max[σ(δA), σ(δB)], (3.150)

(3.148) leads to:

‖δX‖2 ≤
√
2‖X0‖2max{σ(δA), σ(δB)}

σ(M0)−
√
2max{σ(δA), σ(δB)}

(3.151)

Therefore, any controller vector X0 + δX solution of (3.141) satisfies

‖δX‖2 ≤ max
δM∈D

√
2‖X0‖2max{σ(δA), σ(δB)}

σ(M0)−
√
2max{σ(δA), σ(δB)}

(3.152)

which gives bounds on the coefficients ci, di of the controller associated with any
perturbed systems in In. Since

‖δX‖22 =
n−2∑
i=0

δc2i +
n−1∑
j=0

δd2j , (3.153)

we obtain, for any i = 0, · · · , n− 2:

|δci| ≤
√
2‖X0‖2maxδM∈D{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈D{max{σ(δA), σ(δB)}}

, (3.154)

and for any j = 0, · · · , n− 1:

|δdj | ≤
√
2‖X0‖2maxδM∈D{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈D{max{σ(δA), σ(δB)}}

. (3.155)

Summary: fix θ0 = (a00, · · · , a0n−1, b00, · · · , b0n−1)T a system in In. Denote by δθ =
(δa0, · · · , δan−1, δb0, · · · , δbn−1)T any perturbation affecting θ0 leaving the system
θ0+ δθ in In. CallM0 =

(
A0 B0

)
the matrix associated with θ0 following (3.139).

The perturbed matrixM is thenM0+δM =
(
A+ δA B + δB

)
. LetX0 be the vec-

tor associated to the controller f(θ0) = (c00, · · · , c0n−2, d00, · · · , d0n−1)T and defined
in (3.139). Finally let δX be the perturbation induced on X0 when θ0 is perturbed of
δθ. Then the coefficients of the perturbation vector δX have the following bounds:

|δci| ≤
√
2‖X0‖2maxδM∈M{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈M{max{σ(δA), σ(δB)}}

, i ≤ n− 2,
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|δdj | ≤
√
2‖X0‖2maxδM∈M{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈M{max{σ(δA), σ(δB)}}

, j ≤ n− 1.

Finally, for any system θ ∈ In, the controller f(θ) = (c0, · · · , cn−2, d0, · · · , dn−1)T
associated with θ is such that

|ci − c0i | ≤
√
2‖X0‖2maxδM∈M{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈M{max{σ(δA), σ(δB)}}

, i ≤ n− 2 (3.156)

and

|dj − d0j | ≤
√
2‖X0‖2maxδM∈M{max{σ(δA), σ(δB)}}

σ(M0)−
√
2maxδM∈M{max{σ(δA), σ(δB)}}

, j ≤ n− 1 (3.157)

where the coefficients c0i , d
0
j are computed according to subsection 3.3.4.

2. Computation of Xi and Xi: this step consists in finding some bounds on the coeffi-

cients of the polynomial χ̃θ,f(θ0)(ξ) when both θ and θ0 describe In. This is equiva-
lent in finding some bounds on the coefficients of the vector χ̃ solution of

(
Ã B̃

)(
C̃0

D̃0

)
= χ̃, (3.158)

where Ã, B̃, C̃0 and D̃0 have the same structure as A,B,C andD previously defined,
and their coefficients ãi, b̃i, c̃0i , d̃

0
i are calculated using (3.128). We denote by χ̃ the

coefficient vector associated to the transformed closed-loop polynomial:

χ̃(ξ) = (ξ − 1)2n−1χ(
ξ + 1
ξ − 1

) (3.159)

introduced in subsection 3.3.4.
(3.158) is a system of 2n equations with the 4n − 1 coefficients {ãi}i=0,··· ,n−1,
{b̃i}i=0,··· ,n−1, {d̃0i }i=0,··· ,n−1 and {c̃0i }i=0,··· ,n−2. These 4n − 1 parameters lie in
the box P̃ defined by

P̃ = {(ã0, · · · , ãn−1, b0, · · · , b̃n−1, c̃0, · · · , c̃n−2, d̃0, · · · , d̃n−1) ∈ R
4n−1}

where ãi ∈ [ãi, ãi], b̃i ∈ [b̃i, b̃i], c̃0i ∈ [c̃0i , c̃0i ] and d̃0i ∈ [d̃0i , d̃0i ]. The bounds ãi,

ãi, b̃i, b̃i are constant values determined by the dimensions ai, ai, bi, bi of the box In
according (3.128). The bounds c̃0i , c̃0i , d̃0i , d̃0i are computed following (3.128), (3.156)
and (3.157).
Each of the 2n equations of (3.158) is linear in its 4n − 1 coefficients and is defined
on the compact set P̃ , hence the minimum and the maximum of the coefficients χ̃

i
are

reached on one of the corner of P̃ for any i = 0, · · · , 2n− 1.
Therefore, the computation of the ith equation in (3.158) on each of the 4n−1 corners
of the box P̃ leads to the family {χ̃j

i}j=1,··· ,4n−1 of 4n − 1 candidate values for the
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coefficient χ̃
i

of χ̃. We finally compute the maximum and the minimum value of this
collection to obtain a lower and upper bound on χ̃

i
:

Xi = min
j=1,··· ,4n−1

χ̃j
i

and Xi = max
j=1,··· ,4n−1

χ̃j
i
, i = 1, · · · , 2n− 1, (3.160)

which define the dimensions of Γ̃+(In). The computation of the maximal closure
box Γ̃+(In) of In is therefore completed. The next and last step is to apply the
Kharitonov’s theorem on Γ̃+(In) to conclude about the strong robustness of In.

Strong Kharitonov’s test

First remark that for any θ, θ0 in In, the closed-loop polyonimal χ̃θ,f(θ0)(ξ) is contained in
the maximal closure box Γ̃+(In). As a consequence, if any element in Γ̃+(In) is strictly
Hurwitz stable, then In is strongly robust. To complete this step we use Theorem 3.3.14. We
define the four polynomials:

γ1(ξ) =X0 +X1ξ +X2ξ
2 +X3ξ

3 +X4ξ
4 +X5ξ

5 +X6ξ
6 + · · ·

γ2(ξ) =X0 +X1ξ +X2ξ
2 +X3ξ

3 +X4ξ
4 +X5ξ

5 +X6ξ
6 + · · ·

γ3(ξ) =X0 +X1ξ +X2ξ
2 +X3ξ

3 +X4ξ
4 +X5ξ

5 +X6ξ
6 + · · ·

γ4(ξ) =X0 +X1ξ +X2ξ
2 +X3ξ

3 +X4ξ
4 +X5ξ

5 +X6ξ
6 + · · ·

where the coefficients Xi,Xi are computed according to (3.160). If these four polynomials
are strictly Hurwitz, then the set In is time-invariant strongly robust.

We now make the following remarks.

(2) Conservatism: the test in Algorithm 3.3.18 is a conservative test, due to the approx-
imation steps necessary to obtain boxes of systems or interval polynomials and these
outer-bounding steps are necessary in order to use the Kharitonov’s Theorem in The-
orem 3.3.14. As a result, there is the risk that even if the initial box of systems In
is time-invariant strongly robust, the test given in Algorithm 3.3.18 does not allow us
to draw any conclusion. More general a set in Cn might be strongly robust whereas
it is not enclosable in a strongly robust box of systems. However, the dimensions of
the maximal closure box on which the test is actually applied remain proportional to
the dimensions of the initial box In. Back in an adaptive control framework, if In
represents the uncertainty set on the true plant to be controlled, it is crucial to design
an input sequence such that this uncertainty set shrinks with time. Under this condi-
tion, our test on time-invariant strong robustness is guaranteed to become successful
in finite time. This issue is investigated further in Chapter 4.

(2) Non-orthotopic bounded sets of systems in Cn: any bounded set Ω can be enclosed
in an outer-bounding box of systems in Cn defined in Definition 3.5. Then, the test
presented in Algorithm 3.3.18 can be applied on the obtained outer-bounding box.
If this test is positive, i.e., if the outer-bounding set is proved to be time-invariant
strongly robust, then Ω is time-strongly robust. Of course, conservatism of the test
given in Algorithm 3.3.18 is increased if the bounded set to be tested is not a box of
systems.
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3.4 Weak strong robustness: the pole placement case

In Section 3.1, we emphasized in Remark 3.1.15 that a given set in Cn may be strongly robust
with respect to a given control objective whilst it is not strongly robust with respect to another
control objective. This led to the notion of weak strong robustness defined in Definition
3.1.16. This dependence control objective/strong robustness raises the following questions:
given a set Ω ⊂ Cn, with respect to what control objectives would Ω be strongly robust? If
such control objectives exist, how can they be computed and which one would be the ’closest’
to a pre-specified control objective, and what sense can we give to the notion of ’closeness’
between two control objectives? Our objective is this section is to investigate these questions
in the case of pole placement in some stable real poles. More than a complete study of these
questions, this section presents preliminary results which, after a further investigation, could
be extended to any type of control objective that satisfies Assumption 2.1.13.

Definition 3.4.1 (Class of pole placements) LetF denote the set of pole placements which
amounts to place the closed-loop poles in stable poles(α1, · · · , α2n−1) ∈ (] − 1, 1[)2n−1.
A pole placement element ofF is said to be admissible for strong robustness for a given set
Ω ⊂ Cn if Ω is strongly robust with respect to this pole placement.

It follows from Definition 3.4.1 that any element in F can be described completely by a
(2n− 1)-uplet in (]− 1, 1[)2n−1, representing the 2n− 1 desired poles.
Alternatively, any element in F is also completely described by the 2n− 1 coefficients of the
desired closed-loop characteristic polynomial (i.e., the unique monic polynomial which takes
its zeros in the desired poles). For instance, consider the pole placement with given desired
closed-loop poles α1, · · · , α2n−1, with |αi| < 1, ∀i. Let p denote the corresponding desired
closed-loop characteristic polynomial:

p(ξ) := p0 + p1ξ + · · ·+ p2n−2ξ2n−2 + ξ2n−1 =
2n−1∏
i=1

(ξ − αi). (3.161)

The considered pole placement can be described by the vector V1 composed of the desired
poles:

V1 = (α1, · · · , α2n−1)T ∈ (]− 1, 1[)2n−1 (3.162)

or by the vector V2 composed of the coefficients of the polynomial p given in (3.161):

V2 = (p0, · · · , p2n−2, 1)T ∈ R
2n+1. (3.163)

3.4.1 Set of pole placements that are admissible for strong robustness

Consider a fixed set of systems Ω ⊂ Cn. The question we are asking is the following: what
are the pole placements element of F defined in Definition 3.4.1 with respect to which Ω is
strongly robust? In this respect we have the following proposition.

Proposition 3.4.2 (A set of pole placements admissible for strong robustness) LetΩ ⊂ Cn
be a given set of systems. For any pole placementV element inF defined in Definition 3.4.1,
described either by a vector of the form(3.162) or (3.163), let fV denote the control law
that assigns with any systemθ ∈ Cn its controller fV (θ) placing the closed-loop poles in
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the desired poles. Denoting byp the desired characteristic polynomial associated withV
according to(3.161), fV is computed by Ackerman’s formula [72]:

fV (θ) = −[0 · · · 0 1][B(θ) · · ·A(θ)2n−1B(θ)]p(A(θ)),∀θ ∈ Cn, (3.164)

whereA(θ) andB(θ) are given in(3.18) and (3.19) respectively. Now, for anyθ ∈ Ω,
let Bθ,V denote the ball of systems inCn with centerθ and radius the complex structured
stability radiusrCA(θ) +B(θ)fV (θ), B(θ), I2n−1 defined in Definition(3.2.3). For anyθ ∈
Ω, consider the set of pole placements inF such that for any systemθ′ ∈ Ω, the ball of
systemsBθ,V containsΩ:

Fθ = {V ∈ F : Ω ⊂ Bθ,V } (3.165)

Finally define the setFΩ as follows:

FΩ =
⋂
θ∈Ω

Fθ. (3.166)

If FΩ �= ∅, thenΩ is strongly robust with respect to any pole placement inFΩ, meaning that
any pole placement inFΩ is admissible for strong robustness forΩ.

Proof: Suppose that FΩ �= ∅. Then, ∀θ ∈ Ω and ∀V ∈ FΩ, Ω ⊂ Bθ,V . Hence,
Ω ⊂

⋂
θ∈Ω Bθ,V . Therefore, it follows from Theorem 3.2.8 that Ω is strongly robust with

respect to any V ∈ FΩ �= ∅. Equivalently, FΩ is contained in the set of pole placements in
F that are admissible for strong robustness for Ω.

Note that the converse of Proposition 3.4.2 does not necessarily hold, since the largest strongly
robust set of systems containing a given system θ ∈ Cn for a given pole placement V ∈ F
might contain systems that are not element of the ball Bθ,V defined in Proposition 3.4.2.

The result given in Proposition 3.4.2 provides us with a theoretical way to check whether
a given set of systems Ω ⊂ Cn is weakly strongly robust or not. A question that naturally
follows this result is the following: how can this test can be practically performed? In the
general case of systems of order n, how to compute the sets of systems Bθ,V defined in
Proposition 3.4.2 is not clear yet. However, the first order case is rather simple. Indeed we
already saw in Example 3.1.17 that whether a given set Ω ⊂ C1 is weakly strongly robust
or not can be checked geometrically. Also, the exact set of pole placements in a stable pole
can be computed. When this set is empty, Ω is not weakly strongly robust. On the contrary,
when this set is not empty, it depicts exactly the set of pole placement admissible for strong
robustness. This idea is illustrated in Figure 3.4.
It should be noted that the discussion addressed in Example 3.1.17 is still valid if the set
Ω is not convex nor compact. However, let us focus on the case where Ω is a convex and
compact set. Then it is easy to check (geometrically or analytically) that the set of stable
poles α ∈] − 1, 1[ yielding strong robustness of Ω is convex. This means that if there exists
α1, α2 in ]− 1, 1[ such that α1 ≤ α2, and such that pole placement in α1 and pole placement
in α2 are admissible for strong robustness for Ω, then Ω is also strongly robust with respect
to any pole α such that α1 ≤ α ≤ α2. This remark hence suggests that the set of poles
α ∈] − 1, 1[ yielding strong robustness of Ω may be computed by means of a dichotomy
strategy as follows. Suppose that we know a stable pole α0 such that Ω is strongly robust
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with respect to pole placement in α0.
Fix ε ∈]− 1− α0, 1− α0[. Denote α1 → α0 + ε.
1. If Ω is strongly robust with respect to pole placement in α1, then [α0, α1] ⊂ FΩ.
2. Otherwise, the upperbound of FΩ is in [α0, α1[.
By increasing or decreasing ε, we would then estimate the lower and upper bounds of the
set of stable poles α ∈] − 1, 1[ yielding strong robustness of Ω, this with an arbitrarily good
accuracy. Then, since the set of stable poles α ∈] − 1, 1[ yielding strong robustness of Ω is
necessarily convex, any pole located between this lower and upper bounds also yields strong
robustness for Ω. Such strategy may be generalized to higher order cases, but this problem is
still under investigation.

3.4.2 Distance between pole locations

Now, what is interesting is to measure how ”far” a pole placement admissible for strong
robustness is located from a given desired control objective. It naturally requires the def-
inition of a notion of ”distance” between two pole placements. Since the the pole place-
ment objective can be characterized in several ways, the notion of distance between two pole
placements, however it is defined, depends on the used description. For instance, suppose
V, V ′ to be in the class F defined in Definition 3.4.1. Then there exist (α1, · · · , α2n−1)
and (β1, · · · , β2n−1) in (]−1, 1[)2n−1 and (p0, · · · , p2n−2, 1) and (q0, · · · , q2n−2, 1) in R

2n

such that

p(ξ) := p0 + p1ξ + · · ·+ p2n−2ξ2n−2 + ξ2n−1 =
2n−1∏
i=1

(ξ − αi), (3.167)

q(ξ) := q0 + q1ξ + · · ·+ q2n−2ξ2n−2 + ξ2n−1 =
2n−1∏
i=1

(ξ − βi). (3.168)

Moreover, V1 and V2 can be described by their associated control laws f, g : Cn → R
2n−1

defined in Assumption 2.1.13 by

f(θ) = −[0 · · · 0 1][B(θ) · · ·A(θ)2n−1B(θ)]p(A(θ)),∀θ ∈ Cn, (3.169)

g(θ) = −[0 · · · 0 1][B(θ) · · ·A(θ)2n−1B(θ)]q(A(θ)),∀θ ∈ Cn, (3.170)

where A(θ) and B(θ) are given in (3.18) and (3.19) respectively.
Hence we can define the distance between V1 and V2 in three different ways. First we can
define the distance d1(V, V ′) between V1 and V2 in terms of distance between the desired
poles:

d1(V1, V2) = ||(α1, · · · , α2n−1)− ||(β0, · · · , β2n−1)||. (3.171)

Alternatively, we can define the distance d2(V1, V2) between V1 and V2 in terms of distance
between the desired characteristic polynomials:

d2(V1, V2) = ||(p1, · · · , p2n−2)− ||(q0, · · · , q2n−2)||. (3.172)

Or, we can define the distance d2(V1, V2) between V1 and V2 in terms of distance between
the associated control laws:

d3(V1, V2) = ||f − g|| := sup
θ∈Ω

||f(θ)− g(θ)||. (3.173)
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Remark 3.4.3 The advantage of the distance d2 in (3.172) is its convenience for computa-
tions. However, this metric considers two control objectives V1, V2 close to each other as soon
as their coefficients pi, qi are close to each other whereas from a stability point of view they
can be far from each other, since one can be stable and the second unstable. In this respect,
the use of the distance d3 defined in (3.173) might be more judicious since the closeness be-
tween two pole placements in the sense of the distance d3 is somehow more representative of
how different the two pole placement will be in terms of the input control action.

3.5 Conclusions

In this chapter we motivated and defined the notion of strong robustness, whilst connecting
this notion to classical notions in control theory. One important contribution of this chapter
is to present a proof for the existence of strongly robust neighborhood around any system in
the considered class of systems. In the given proof, the continuity assumption (see Chapter
2, Assumption 2.1.13) on the map assigning with any system in our class of systems its
controller is motivated. Also, various tests resorting to various well known tools in control
theory (structured stability radii, infinite or finite LMI’s, Kharitonov-like characterization)
have been constructed to check whereas specified subsets (balls of systems, polyhedral sets
of systems, orthotopic sets of systems) in our class of systems are strongly robust or not with
respect to a given control objective. Some of the tests for strong robustness presented in the
present chapter are computationally expensive or not tractable and are more a first step rather
than a complete solution.
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Chapter 4

Set-membership identification for
control

In this chapter an input design to guarantee boundedness and decreasing size of the un-
certainty set is proposed in the scenario of open-loop identification for adaptive control.
Although our aim will be later in this thesis to apply this input design to strong robustness-
based adaptive control algorithms, the scope of this chapter can be enlarged to the more gen-
eral framework of identification for control. The estimated system is a linear time-invariant
discrete-time SISO system of known ordern with modeling error unknown-but-bounded with
a known bound. The key idea in our approach is to consider a2n-periodic input sequence and
to establish sufficient conditions ensuring boundedness of the uncertainty set in finite time.
An iterative input design involving a single design parameter leads then to an uncertainty set
of which the volume uniformly decreases with time.

4.1 Introduction

As we saw in Chapter 3, when little information is known on the system to be controlled, the
use of a certainty equivalence type of strategy may not be appropriate because asymptotic and
global stability of the closed-loop system cannot be guaranteed. In order to resort to certainty
equivalence-type control methods, it is hence necessary to first decrease the uncertainty level
on the system to be controlled. In this chapter we are concerned with identification of an
uncertain linear system with unknown-but-bounded uncertainty with known lower and upper
bounds (see Chapter 2). The objective is to collect information of the system of interest until
enough is known to allow the use of a certainty equivalence-based control scheme. Since
we do not impose any further properties on the modeling error, e.g. statistical properties,
common parameter identification schemes such as recursive least squares may not be the
appropriate tool. Instead we adopt set membership identification, notion which has been ex-
tensively studied in the literature in the case of bounded-but-unknown uncertainty ([11], [12],
[45], [78], [79] and references therein). Loosely, this amounts to finding a set, the uncertainty
set, based on measurements, that contains the true system description.
Because no probabilistic assumptions on the modeling error are imposed, each point in the
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uncertainty set is equally likely to represent the true system. Therefore within the uncertainty
set there is no natural candidate on the basis of which a controller could be designed. As we
saw in Chapter 2, the minimal - but stringent - condition that the uncertainty set has to satisfy
so that we can ’safely’ start a certainty-equivalence type of strategy is to be strongly robust
with respect to the desired control objective. Here the meaning of ’safe’ certainty equivalence
based control refers to the case where the three drawbacks exposed in Chapter 3 would be
non-existent. The question we are investigating in the present chapter is hence the follow-
ing: how to force identification so as to yield an uncertainty set which is strongly robust in
finite time? As previously discussed in Chapter 2, strong robustness is guaranteed to occur
provided that the uncertainty set is sufficiently small, i.e., when the radius of the smallest
outer-bounding sphere is small. Hence the above question might be re-formulated as follows:
how to force identification so as to yield an uncertainty set which becomes arbitrarily small?
Since small uncertainty sets may be of interest to any type of control design of an uncertain
system, this question may be addressed in a much broader context than just discussions on
adaptive control involving strong robustness. Indeed, if the uncertainty set is small enough,
it may be expected that a controller designed for some nominal choice will also be useful
for every other system in the uncertainty set. A first example of such a nominal choice in
the robust control literature is the center of the enclosing sphere of smallest radius, known
as the Chebyshev centerof the uncertainty set ([3], [8], [106], [108]). A second example of
such nominal choice is the analytic centerof the uncertainty set, defined as the point in the
uncertainty set which minimizes the logarithmic average output error ([12], [8]). In order to
base a control design on such nominal centers for controlling the real unknown system, it is
fundamental that the uncertainty set is sufficiently small.
Obviously, the size and shape of the uncertainty set highly depend on the way the system is
excited [5]. A good input from an identification point of view is an input which leads to a
large amount of information about the real plant, i.e., a small uncertainty set. Such thinking
gave rise to the idea of optimal inputs[11], [45]: assuming an input structure and an input
energy level, one constructs an input so as to minimize a specified measure of the size of the
uncertainty set. Unfortunately, such optimal solutions depend on the true unknown system
[11], and thus cannot be computed a-priori. Paradoxally, a good approximation of these opti-
mal solutions for a given energy level would require the availability of a good model, hence
a small uncertainty. This paradox is typical in adaptive control discussions: the best answer
to a problem often depends on the real unknown system to be controlled.
Now, rather than computing an input so as to exactly minimize the size of the uncertainty
set, another approach would consist in designing an input such that the largest size of the
uncertainty we could possibly obtain is minimized. Such an input would then be optimal in
the worst case possible, leading to a worst-case optimal input. Let us assume that a bounded
uncertainty set has been obtained on the basis of data measurements (this issue will be dis-
cussed further in this chapter). Since the true system parameters belong to the uncertainty set
at any time, one may compute the new input on the basis of this uncertainty set: this input is
the input with the pre-specified energy level which minimizes the worst-case (hence largest)
uncertainty set at the next time. A further discussion on this design is postponed until Section
4.3.3.
However, the computation of such an ’optimal input’ or ’worst-case optimal input’ for a given
energy level involves some optimizations that are far from simple and that depend on the in-
put structure. Hence uniqueness of such optimal inputs is not guaranteed, and a comparison
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of different solutions in terms of suitability to the designer might not be clear. In addition, it
must be emphasized that even in the ideal case where such an ’optimal input’ or ’worst-case
optimal input’ of given energy level would be obtained might not be enough for the control
purpose. Indeed, to obtain an uncertainty set with a minimized size for a given input energy
level does not imply that this size will be small enough to lead to a strongly robust uncertainty
set and since it cannot be a-priori known how small the uncertainty set must be in order to
be strongly robust, it implies that the designer cannot know a priori to what level the input
energy must be set. In the case where the uncertainty would be too large, we should hence
re-iterate the design of the input by increasing the allowed input energy level, this until the
size becomes sufficiently small. But then, we may wonder whether we really benefit from
an iterative design consisting in increasing the energy level, compute the worst case optimal
input with this energy level, this until strong robustness is reached, in comparison with the
situation where we would fix the input structure and increase its energy level until strong
robustness is reached. Obviously the final required energy level using the first method will
be smaller than using the second method, however the optimization steps might be of high
computational complexity.
These are the reasons why in our approach we do not consider optimal inputs in the sense
of inputs that would minimize a measure of the size of the uncertainty set. Instead, we de-
sign an input sequence which leads to an uncertainty set that uniformly shrinks with time.
At each time instant, the updated input might not be optimal in the sense that the size of
the uncertainty set is minimized, but this size is guaranteed to decrease uniformly with time.
Hence strong robustness will be achieved in finite time. We assume all along this chapter that
a test to check whether this size is indeed small enough or not is available to the designer,
meaning that the input sequence that is the object of the present discussion will not be applied
infinitely. This problem has been studied in Chapter 3.
Our input design will go along the two following lines. We first select an input structure so
as to minimize the number of design parameters, which brings us to select periodic input se-
quences with period 2n, denoting by n the assumed system order. Taking the 2n input values
as parameters, we then derive sufficient conditions so that the uncertainty set becomes arbi-
trarily ”small” for the control purpose, considering two possible measures for size: volume
and radius. Our approach differs in two aspects from similar time domain designs reported
in the literature. Firstly, we aim explicitly at obtaining small uncertainty sets since small
uncertainty sets are necessary for control. This leads inevitably to input sequences of po-
tentially large magnitude. We shall see, however, that due to our construction, the inputs
will not grow beyond an unnecessary large threshold. Secondly, the systems that have been
studied in the literature regarding optimal periodic input design is restricted to finite impulse
response (FIR) systems, that is systems with all poles in the origin [11]. Our class of systems
include arbitrary open loop stable input-output systems. We shall see that this is a nontrivial
extension. The main reason for that is that, contrary to the FIR case, the input sequence that
would minimize the radius of the uncertainty set explicitly depends on the unknown system
parameters.
This chapter is organized as follows. In Section 4.2 we formulate the problem statement.
Then, in Section 4.3, we focus on a class of periodic input sequences and give sufficient
conditions on the input values to guarantee the uncertainty set to be bounded in finite time.
However, these conditions depend on the true unknown system, and therefore cannot be ex-
plicited a priori. This is the reason why in Section 4.3.3 we focus on the iterative design of an
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asymptotically periodic input sequence which guarantees that the conditions for boundedness
and shrinking volume are satisfied.

4.2 Preliminaries and problem statement

4.2.1 Preliminaries

The uncertain system to be studied is described by linear time-invariant difference equations
of the form

y(k + 1) = (θ0)Tφ(k) + δ(k + 1), ∀k, (4.1)

where φ(k) ∈ R
2n denotes the regressor vector at time k given by:

φ(k) = (−y(k) · · · − y(k − n+ 1) u(k) · · ·u(k − n+ 1))T , ∀k,

denoting by u, y the input and output sequences respectively, and θ0 denotes the true unknown
parameter vector given by:

θ0 = (an−1 · · · a0 bn−1 · · · b0)T ∈ Cn ∩ Sn (4.2)

where Sn and Cn are the set of asymptotically stable systems in Pn and the set of controllable
systems in Pn respectively as defined in Definition in 2.1.5. Finally, δ denotes the model-
ing uncertainty and satisfies Assumption 2.1.10, i.e., δ is bounded-but-unknown with known
lower and upper bounds δ, δ so that

δ ≤ δ(k) ≤ δ, ∀k. (4.3)

Identification for systems corrupted by deterministic modeling error can be done in many
ways. For the case of bounded but otherwise unstructured modeling error a large body of
research is devoted to set-membership identification(see for instance [12], [79] and the
references therein). It consists in computing the membership setdefined in Chapter 2 as the
set of all models that are consistent with the available input-output data {φ(i)}0≤i≤k:

Ĝ(k) =
k⋂

i=0

G(i), (4.4)

where G(k), ∀k is given by

G(k) = {θ ∈ R
2n : δ ≤ y(k + 1)− θTφ(k) ≤ δ}. (4.5)

G(k) is the hyperstrip in R
2n bounded by the two hyperplanes given by

H+(k) = {θ : y(k + 1) = θTφ(k) + δ} and

H−(k) = {θ : y(k + 1) = θTφ(k) + δ}.

Hence, after k measurements, k ≥ 1, the set Ĝ(k) of parameters which are compatible with
the assumed model structure (4.1) and the measurements up to time k is given by

S(k) = Cn ∩ Sn ∩ Ĝ(k). (4.6)

S(k) defined in (4.6) is the uncertainty setat time k. The following properties were estab-
lished in Chapter 2.
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Property 4.2.1

1. Provided that||φ(k)|| �= 0, the width of the hyperstripG(k) described in (4.5) is given
by

W(k) = (δ − δ)||φ(k)||−1, ∀k. (4.7)

2. ∀k ≥ 2n − 1, the intersection formed by the2n successive hyperstrips
{G(k− i)}i=0,··· ,2n−1, is a bounded polytope inR2n if and only if the vectorsφ(k−i),
0 ≤ i ≤ 2n−1 are linearly independent [11], i.e.,

det(R(k)) �= 0, (4.8)

where the matrixR(k) is the data matrix defined by

R(k) = [φ(k − 2n+ 1) · · · φ(k − 1) φ(k)] ∈ R
2n×2n. (4.9)

Equation (4.8) is an excitation-type condition.

3. AfterN measurementsφ(1), · · · , φ(N), supposing that

max
k≤N

{||φ(k)||.| cos(θ̃, φ(k)) |} �= 0, (4.10)

the parameter errorθ lies in the ball with centerθ0 and radiusρ(N) where

ρ(N) =
δ − δ

maxk≤N{||φ(k)||. | cos(θ̃, φ(k)) |}
. (4.11)

Clearly, from (4.11), a spanning set of regressors having a large norm with respect to the
modeling error levels δ, δ and satisfying (4.10) yields a smaller uncertainty set.

4.2.2 Problem formulation

In this chapter, the motivation of the designer is to control the unknown system. By control
we here mean the improvement of the performance of the system (4.1). For instance, the
control aim could be pole placement. Since this system is unknown, the designer can only
rely on an estimated system to design a ”good” controller, provided that this estimate is
”good”. Therefore, we first perform set-membership identification until the uncertainty set is
strongly robust. More generally, the objective is to obtain an uncertainty set which is small
enough so that a relatively good controller can be obtained on the basis of this uncertainty set.
Hence, we emphasize that the identification objective is not to identify the exact description
of (4.1). Instead, we assume that the criterion that tells us whether identification can stop so
that the effort can switch to control design is satisfied if the uncertainty set is strongly robust
in the sense that has been discussed in Chapter 3. Moreover, we here suppose that, given an
uncertainty set, it can be measured whether this set is strongly robust or not.

Terminology 4.2.2 The notion of ”size” of a bounded set of systems is taken to be alterna-
tively its radius, defined as the radius of the smallest outer bounding sphere, or its volume,
when specified. If the considered set is not bounded, its size is said to be infinite. Finally, we
say that a set is ”small” if its size is small.
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Our motivation is the following.

Problem Statement 4.2.3 Consider the system(4.1). Design an input sequence{u(k)} such
that for any initial conditionsφ(0), the membership set̂G(k) given in(4.4) identified with this
input sequence becomes arbitrarily small with time, in the sense defined in Terminology 4.2.2.

4.3 Membership set estimation with a periodic input

In order to design an input sequence meeting Problem Statement 4.2.3, one reasons as fol-
lows. Assume that the two following conditions are satisfied:

i. Ĝ(k) is bounded in finite time:

∃k1 : det(R(k)) �= 0, ∀k ≥ k1, (4.12)

where R(k) is given in (4.9).

ii. The width (4.7) of the strip G(k) defined in (4.5) uniformly decreases with time:

∀k, ∃k′ ≥ k :W(k′) <W(k), (4.13)

whereW(k) is given in (4.7).

Now remark that as soon as the uncertainty set becomes bounded, it stays bounded at any
further time. Moreover the widths of the strips G(k) are upper-bounds on the dimensions of
the uncertainty set Ĝ(k) provided that this set is bounded. Thus if i. and ii. are satisfied, the
radius of the smallest sphere bounding Ĝ(k) becomes arbitrarily small with time. Next, we
proceed according the following steps: first we select an input structure, defining our design
parameters. Then we establish sufficient conditions on these design parameters so that the
conditions i. and ii. are met. Finally, additional conditions are derived so that ii. is met.

4.3.1 Selection of the input structure

In Problem Statement 4.2.3 the structure of the input to be designed is not specified and
could a a priori be of any kind. In this section we focus on solutions which would be easily
implementable whilst presenting a minimal number of design parameters.
Clearly, in order to have a bounded uncertainty set in the parameter space R

2n, Ĝ(k) must
result from at least 2n distinct measurements φ(0), · · · , φ(2n−1)meeting the condition (4.8).
Suppose the system (4.1) to be without modeling error (δ = 0). Then, for all k ≥ 2n−1, (4.8)
can be seen as a system of 2n linear equations in the input values u(k− i), i = 0, · · · , 2n−1.
Thus, 2n is in some sense the minimum number of parameters that must be tuned. It is here
of relevance to refer to the frequency domain approach: in [102] it is shown that an excitation
used for identification of a linear system must effectively contain a minimum number of
distinct frequencies, and this minimum number depends on the number of parameters defining
the system.
Following this discussion, we consider 2n-periodic input sequences of the form

ũ(k) = ut(k), ∀k (4.14)
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where the function t(·) : Z −→ Z2n is defined by

t(k) = k mod 2n, ∀k ∈ Z. (4.15)

Because of their simple structure, periodic inputs are easily generated and allow for a simple
analysis. For this reason they are typically used for system identification. In a frequency
domain approach, such inputs correspond to multi-sine signals ([5], [42], [71], [102]).

4.3.2 Boundedness of the uncertainty set

In this part we consider the class of 2n-periodic input sequences of type (4.14), taking the 2n
input values u0,· · · ,u2n−1 as design parameters. The objective is to find sufficient conditions
on these parameters so that the uncertainty set Ĝ(k) obtained by using the input sequence
(4.14) is bounded in finite time. The uncertain system is described by:

y(k + 1) = (θ0)Tφ(k) + δ(k + 1), φ(0), (4.16)

where the regressor vector φ(k) ∈ R
2n is given by (4.2). To begin with, the superposition

principle allows us to decompose the output sequence y in (4.16) along two components:

y(k) = ỹ(k) + yδ(k), ∀k, (4.17)

where ỹ denotes the 2n-periodic output sequence associated to the uncertainty-free system
with 2n-periodic input sequence {ũ(k)} and yδ denotes the contribution of the uncertainty δ.
We then have:

ỹ(k + 1) = (θ0)T φ̃(k), ∀k, (4.18)

and
ỹ(k) = ỹ(k + 2n), ∀k, (4.19)

with
φ̃(k) = (−ỹ(k) · · · − ỹ(k − n+ 1) ũ(k) · · · ũ(k − n+ 1))T , ∀k. (4.20)

The sequence ỹ, defined as the unique solution of (4.19), (4.18) is usually referred to as the
steady state output. In the sequel the symbol ˜ refers to the system in steady-case, i.e., the
system with 2n-periodic input and output signals ũ, ỹ. Now, the output component yδ due to
the uncertainty δ is given by

yδ(k + 1) = (ϑ0)Tφδ(k) + δ(k + 1), φδ(0), (4.21)

where
ϑ0 = (an−1 · · · a1 a0)T ∈ R

n, (4.22)

and
φδ(k) = (−yδ(k) · · · yδ(k − n+ 2) yδ(k − n+ 1))T ∈ R

n,∀k. (4.23)

In particular, we have

φ(0) = φ̃(0) + ((φδ(0))T u0 · · ·un+1)T . (4.24)

In order to find sufficient conditions on the parameters u0, · · · , u2n−1 so that the boundedness
condition is satisfied, we now proceed in two steps. We first assume the output sequence is
equal to ỹ defined by (4.19), (4.18) and (4.20). This amounts to assume that the system (4.1)
to be uncertainty-free (δ = 0) and such that the input and output signals are the steady-state
input and output sequence, i.e., are 2n-periodic. Later we will relax these two assumptions.
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System in steady-state without uncertainty

Let us first consider the uncertainty-free system in steady state described by (4.19, 4.18, 4.20)
and (4.14). The output sequence ỹ is 2n-periodic taking values y0 = ỹ(0), · · · , y2n−1 =
ỹ(2n− 1) and is hence given by

ỹ(k) = yt(k), ∀k (4.25)

where t(·) is given in (4.15). We easily prove that y0, · · · , y2n−1 satisfy

[y0 y1 · · · y2n−1]M1 = [0 · · · 0 b0 b1 · · · bn−1] U, (4.26)

whereM1 ∈ R
2n×2n is given by

M1=




1 an−1 · · · a1 a0 0 · · · 0

0 1
. . . a2 a1 a0 · · · 0

...
. . .

...
...

. . .
...

0 0
. . . 1 an−1 an−2 a0

a0 0
. . . 0 1 an−1 a1

a1 a0
. . . 0 0 1 a2

...
. . .

. . .
...

an−1 an−2 · · · a0 0 0 · · · 1




(4.27)

and U ∈R
2n×2n is the circulant matrix [40] defined by

U =




u0 u1 u2 · · · u2n−1
u1 u2 u3 · · · u0
...

...
... · · ·

...
u2n−2 u2n−1 u0 · · · u2n−3
u2n−1 u0 u1 · · · u2n−2


 (4.28)

Let φ̃(k) ∈ R
2n denote the regressor vector with steady-state input/output values given by

φ̃(k) = (−ỹ(k) · · · − ỹ(k − n+ 1) ũ(k) · · · ũ(k − n+ 1))T .

Besides, we denote by R̃(k) ∈ R
2n×2n the matrix consisting of 2n successive regressor

vectors given by
R̃(k) = (φ̃(k − 2n+ 1) · · · φ̃(k)). (4.29)

Also, we denote by G̃(k) the hyperplane computed similarly to (4.4) on the basis of the
modeling error-free measurement φ̃(k):

G̃(k) = {θ ∈ R
2n : ỹ(k + 1)− θT φ̃(k) = 0} (4.30)

and finally ˆ̃G(k) is defined for all k ≥ 0 as the intersection of the k planes G̃(k).

ˆ̃G(k) =
k⋂

i=0

G̃(i). (4.31)
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Similarly to (4.8), ∀k ≥ 2n − 1, the 2n successive hyperplanes {G̃(k − i)}i=0,··· ,2n−1 are
linearly independent in R

2n if and only if

det(R̃(k)) �= 0. (4.32)

Let us introduce Q0 to be the following matrix:

Q0 =




−yn−1 −yn yn+1 · · · −yn−2
...

...
...

...
−y1 −y2 −y3 · · · −y0
−y0 −y1 −y2 · · · −y2n−1
un−1 un un+1 · · · un−2

...
...

...
...

u1 u2 u3 · · · u0
u0 u1 u2 · · · u2n−1



∈ R

2n×2n (4.33)

Definition 4.3.1 Given any matrixT , we call row-permutation ofT any matrix obtained
by permutations of the rows ofT . Similarly, we call column-permutation ofT any matrix
obtained by permutations of the columns ofT . And we call permutation ofT any matrix ob-
tained by row-permutations and column-permutations ofT . The relation ”is a permutation
of” is denoted by∼.

The following can be easily verified:

R̃(k) = Q0,∀k = n− 2 mod 2n, k ≥ 2n− 1,
R̃(k) ∼ Q0,∀k �= n− 2 mod 2n, k ≥ 2n− 1. (4.34)

Hence,
∀k ≥ 2n− 1, det(R̃(k)) �= 0⇐⇒ det(Q0) �= 0. (4.35)

Moreover, the following theorem can easily be verified.

Theorem 4.3.2 M1,Q0 andU satisfy the equation:

Q0M1 =M2U (4.36)

whereM2 ∈ R
2n×2n is given by

M2=




−b1 −b2 · · · −bn−1 0 0 0 · · · 0 −b0
−b2 −b3 · · · −bn−1 0 0 0 0 · · · −b0 −b1

...
...

...
...

...
−bn−1 0 0 0 0 0 −b0 · · · −bn−3 −bn−2
0 0 0 · · · 0 0 −b0 −b1 · · · −bn−2 −bn−1
a1 a2 · · · an−1 1 0 0 · · · 0 a0
a2 a3 · · · an−1 1 0 0 0 · · · a0 a1
...

...
...

...
...

an−1 1 0 0 0 0 a0 · · · an−3 an−2
1 0 0 · · · 0 0 a0 a1 · · · an−2 an−1




(4.37)
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Then, in [40], the following theorem is proved.

Theorem 4.3.3 LetM(x0, x1, · · · , xN−1) denote theN × N circulant matrix with entries
x0, · · · , xN−1 in C :

M(x0, · · · , xN−1)=




x0 x1 x2 · · · xN−1
x1 x2 x3 · · · x0
...

...
... · · ·

...
xN−2 xN−1 x0 · · · xN−3
xN−1 x0 x1 · · · xN−2


 (4.38)

M(x0, · · · , xN−1) has full row rank if and only ifgcd(
∑N−1

i=0 xiξ
i, ξN − 1)=1.

From Theorem 4.3.3 we derive the following corollary.

Corollary 4.3.4 The matrixM1 defined in(4.27) is invertible.

Proof: Using Definition 4.3.1, one can easily show thatM1 ∼M ′, where

M ′ =M(1, an−1, an−2, · · · , a0, 0, 0, · · · , 0) ∈ R
2n×2n, (4.39)

and where the matrix M(.) is defined in (4.38). Hence det(M1) = det(M ′). Since the
true system is asymptotically stable, i.e., θ0 ∈ Sn, it follows from 2.1.7 that A(ξ) =
ξn +

∑n−1
i=0 aiξ

i has no zero on the unit circle. Thus 1 + an−1ξ1 + · · ·+ a0ξn = ξnA(ξ−1)
has no zero on the unit circle, i.e., is co-prime with ξ2n−1. From Theorem 4.3.3, this implies
that det(M ′) �= 0 and therefore det(M1) �= 0. This concludes the proof of Theorem 4.3.4.

Now we have the following Theorem.

Theorem 4.3.5 Under the condition(4.2), the following are equivalent:

i. ˆ̃G(k) is bounded, ∀k ≥ 2n− 1 (4.40)

ii. det(R̃(k)) �= 0, ∀k ≥ 2n− 1 (4.41)

iii. det(U) �= 0 (4.42)

iv. gcd(
∑2n−1

i=0 uiξ
i, ξ2n − 1) = 1 (4.43)

Proof:
i. ⇔ ii. Due to the 2n periodicity of φ̃, we have: ˆ̃G(k) =

⋂2n−1
i=0 G̃(k− i), ∀k ≥ 2n− 1. We

conclude remarking that det(R̃(k)) �= 0⇔
⋂2n−1

i=0 G̃(k − i) is bounded, ∀k ≥ 2n− 1.
ii. ⇔ iii. Corollary 4.3.4 implies that M1 is invertible. It follows from Theorem 4.3.2 that
det(R̃(k)) = det(M2UM

−1
1 ), ∀k ≥ 2n − 1. Now, remark that the matrix M2 ∈ R

2n×2n

given in (4.37) satisfies M2 ∼ S(A,B) where S(A,B) is the Sylvester matrix associated
with the polynomials A(ξ) = ξn +

∑n−1
k=0 akξ

k, B(ξ) =
∑n−1

k=0 bkξ
k [93]. Hence, under

the controllability assumption in (4.2), S(A,B) is invertible, implying that the matrix M2 in
(4.37) is invertible. Since M1 is also invertible (see Corollary 4.3.4), then det(R̃(k) �= 0 ⇔
det(U) �= 0, ∀k ≥ 2n− 1.
iii. ⇔ iv. directly follows from Theorem 4.3.3.
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Remark 4.3.6 If det(M2) = 0, then det(R̃(k)) = 0, ∀k ≥ 2n − 1, ˆ̃G(k) is thus never
bounded. Hence the controllability assumption in (4.2) is crucial. If det(M1) = 0, i.e., if the
system to be controlled is not asymptotically stable, no conclusion can be drawn about the

boundedness of the set ˆ̃G(k).

Remark 4.3.7
(1) An interesting problem is the following: how to choose the input sequence so that any 2n
successive hyperplanes G̃(k − i), i = 0, · · · , 2n − 1 are as orthogonal as possible to each
other? Remark that in the case where K(R̃(k)) = 1, where K(R̃(k)) denotes the condition
number of the matrix R̃(k) defined in (4.29), then R̃(k) is an orthogonal matrix, i.e., the
planes {G̃(k − i)}i=0,··· ,2n−1 are exactly perpendicular to each other. Moreover, in the case
of a condition number close to 1, the sensitivity of the boundedness condition (4.42) with re-
spect to modeling errors would be minimized. Hence, we consider the optimization problem
which consists in minimizing K(R̃(k)) = K(M2UM

−1
1 ) over the set of matrices U , where

U ,M1 andM2 are defined in (4.28), (4.27) and (4.37). However, we see that becauseK(M2)
andK(M1) are unknown, to minimizeK(R̃(k)) over the class of matrices U defined in (4.28)
is an ill-posed problem. Indeed, a matrix U which would minimize K(M2UM

−1
1 ) for given

matrices M1, M2 does not necessarily minimize K(M ′
2UM

′−1
1 ) for another choice M ′

1, M ′
2

of the form (4.27), (4.37). This is easily checked in the case of first order systems, i.e., when
n = 1. To illustrate this result, let us consider the two choices of set of matrices (M1,M2),
(M ′

1,M
′
2), defined by a0 = 0.5, b0 = 5 and a′0 = 0.9, b′0 = 0.5 respectively. They are hence

given by

M1 =
[

1 0.5
0.5 1

]
M2 =

[
0 5
1 0.5

]
(4.44)

M ′
1 =

[
1 0.9
0.9 1

]
M ′

2 =
[
0 0.5
1 0.9

]
(4.45)

and we have

U =
[
u0 u1
u1 u0

]
. (4.46)

In this first order case, we have that the 2-periodic input sequence {u0, u1, u0, u1, · · · } satis-
fies (4.8) if and only if:

u20 �= u21, (4.47)

hence at least one of the two variables u0, u1 has to be not zero. Without loss of generality,
let us suppose that u1 �= 0. Then we can write U = u1.U ′ where U ′ is the matrix defined by:

U ′ =
[ u0

u1
1

1 u0
u1

]
. (4.48)

And clearly we have that

K(M2UM
−1
1 ) = K(M2U

′M−1
1 ), K(M ′

2U(M
′
1)

−1) = K(M ′
2U

′(M ′
1)

−1). (4.49)

Hence, to study K(M2UM
−1
1 ) and K(M ′

2U(M
′
1)

−1) as functions of the variables u0, u1 is
equivalent to studyK(M2UM

−1
1 ) andK(M ′

2U(M
′
1)

−1) as functions of one variable u0
u1

. For
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this reason, we can suppose that u1 = 1 and study K(M2UM
−1
1 ) and K(M ′

2U(M
′
1)

−1) as
functions of one variable u0. In Figure 4.1, we represent the condition numbersK(M2UM

−1
1 )

and K(M ′
2U(M

′
1)

−1) for u1 = 1, a0 = .5, b0 = 5 and a′0 = .9, b′0 = .5, as functions
of u0 ∈ R\{1,−1}. If |u0| = 1, i.e., if the excitation condition (4.8) is not satisfied, we
have K(M2UM

−1
1 ) = K(M ′

2U(M
′
1)

−1) = ∞, i.e., the matrix products M2UM
−1
1 and

M ′
2U(M

′
1)

−1 are ill-conditioned. These plots show that when K(M2UM
−1
1 ) is minimized,

K(M ′
2U(M

′
1)

−1) is not minimized and vice-versa. Hence, the input value u0 that minimizes
the condition number of the product M2UM

−1
1 ) depends on the choice of M1, M2 of the

form (4.27), (4.37). Since the true system parameters a0, b0 are unknown, it is therefore not
possible to minimize K(M2UM

−1
1 ) a priori.
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Figure 4.1: K(M2UM
−1
1 ) for (a0, b0)=(.5, 5) (dotted line), (a′0, b

′
0)=(.9, .5) (solid line).

For higher order systems this effect is likely to be even stronger, but this is difficult to
analyze. Monte Carlo simulations, however, confirm this intuition and show that for different
parameter sets, the condition number reaches its minimum values in different values of the
input values.

(2) Although the lack of knowledge of the matrices M1, M2 prevents us from minimizing
K(M2UM

−1
1 ) over the class of matrices U of the type (4.28), it is worth to note that

K(M2UM
−1
1 ) ≤ K(M2).K(U).K(M−1

1 ) = K(M2).K(U).K(M1). (4.50)
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Now, since M1 and M2 are fixed (but unknown), the upper bound of K(M2UM
−1
1 ) on the

right hand side of (4.50) is minimal when K(U) = 1. We saw earlier thatM1 andM2 are in-
vertible, hence the term K(M2).K(U).K(M1) is finite provided that U is invertible. Clearly,
the situation whereK(U) = 1 by no means implies thatK(M2UM

−1
1 ) is minimal. However,

for any matrix U of the form (4.28), if det(U) �= 0, then it follows from Theorem 4.3.5 that
ˆ̃G(k) is bounded ∀k ≥ 2n − 1. A nice property of this result is that it is independent of the
unknown system (4.1). Following this discussion, we now focus on the parameterization of
periodic sequences that are solutions of K(U) = 1. We have the following result.

Result 4.3.8 The two following statements are equivalent.

i. K(U) = 1 whereU is given in(4.28).

ii. u0, · · · , u2n−1 meet then+ 1 following conditions:

∃i ∈ [0, 2n− 1] such thatui �= 0 and
2n−1∑
p=0

ut(p)ut(p+j) = 0, ∀j ∈ [1, n], (4.51)

wheret(k) = k mod 2n, ∀k ∈ N.

Proof: Denote by ωk, k = 0, · · · , 2n− 1 the unit roots given by

ωk = ei
2Πk
2n . (4.52)

It is shown in [65] that for any sequence {xi}i=0,···2n−1 ∈ C
2n, the eigenvalues of the

circulant matrixM(x0, · · · , x2n−1) of the form (4.38) are given by:

λk(M(x0, · · · , x2n−1)) = (
2n−1∑
m=0

ωm
k xm)

1
2 ∈ R+, k = 0, · · · , 2n− 1. (4.53)

Now, we have that the singular values of U given in (4.28) are given by

σk(U) =
√
λk(UTU), ∀k = 0, · · · , 2n− 1. (4.54)

Now, we easily check that the matrix UTU is the circulant matrix satisfying

UTU =M(x0, · · · , x2n−1), (4.55)

where x0, · · · , x2n−1 are given by

xm =
2n−1∑
p=0

ut(p)ut(p+m), m = 0, · · · , 2n− 1. (4.56)

Hence, using (4.53) and (4.54), the singular values of U are given by

σk(U) = (
2n−1∑
m=0

ωm
k xm)

1
2 ∈ R+, k = 0, · · · , 2n− 1, (4.57)
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where x0, · · · , x2n−1 are given in (4.56). Using the Frobenius norm for the matrix norm,
we have: K(U) = σ/σ where σ, σ denote the largest and the smallest singular values of U
respectively. Hence K(U)=1 if and only if σk(U)=σp(U), ∀(k, p) and σk(U) �=0, ∀k. For
all p = 0, · · · , 2n− 1, let P (ξ), Qp(ξ) ∈ C[ξ] denote the polynomials defined by:

P (ξ) =
2n−1∑
m=0

xmξ
m, (4.58)

Qp(ξ) = P (ξ)− P (ωpξ) =
2n−1∑
m=1

(1− ωm
p )xmξm. (4.59)

Using (4.58), K(U)=1 if and only if:

P (ωk) = P (ωp),∀k, p = 0, · · · , 2n− 1. (4.60)

Then, notice that:
ωk = ωp.ωk−p,∀k, p = 0, · · · , 2n− 1. (4.61)

Hence, using (4.59), (4.60) and (4.61), we obtain that K(U) = 1 if and only if ∀k, p =
0, · · · , 2n− 1 the following is satisfied:

Qp(ωk−p) = P (ωk−p)− P (ωp.ωk−p) (4.62)

= P (ωk−p)− P (ωk) = 0.

(4.62) implies that ∀p = 0, · · · , 2n−1, the polynomialQp(ξ) of degree 2n−1 has 2n distinct
zeros {ωj}j=0,··· ,2n−1. Therefore, ∀p = 0, · · · , 2n − 1, the polynomial Qp(ξ) is the zero
polynomial, which implies that xm = 0, ∀m = 1, · · · , 2n− 1. Hence, K(U)=1 is satisfied
if and only if {xm,m = 0, · · · , 2n − 1}= {x0, 0, · · · , 0}, with x0 �=0, which is equivalent
to say that (4.51) is satisfied.

The following corollary follows from Result 4.3.8.

Corollary 4.3.9 Consider2n real-valued numbersu0, · · · , u2n−1 meeting then+1 follow-
ing conditions:

∃i ∈ [0, 2n− 1] such thatui �= 0 and
2n−1∑
p=0

ut(p)ut(p+j) = 0, ∀j ∈ [1, n], (4.63)

wheret(k) = k mod 2n, ∀k ∈ N. Let ũ denote the2n-periodic input sequence defined by

ũ(k′) = uk, ∀k′ = k mod 2n, ∀k. (4.64)

Then the identification of the uncertainty-free system in steady-state given by(4.18) using the

input ũ would be such that̃̂G(k) = {θ0}, ∀k ≥ 2n− 1.

Proof: Suppose that the input sequence is given by (4.64) where u0, · · · , u2n−1 satisfy
(4.63). It follows from Result 4.3.9 that K(U) = 1, where U is given in (4.28). Hence,
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Theorem 4.3.5 means that ˆ̃G(k) is bounded for any k ≥ 2n− 1. Since δ = 0, the strips G̃(k),
∀k, are in fact reduced to hyperplanes. Hence boundedness of the intersection ˆ̃G(2n − 1)

implies that ˆ̃G(2n − 1) is reduced to a point set. Since θ0 ∈ ˆ̃G(k) for all k, this implies that
ˆ̃G(2n− 1) = {θ0}. And therefore ˆ̃G(k) = {θ0}, ∀k ≥ 2n− 1.

Remark 4.3.10 Any 2n-periodic impulse sequence of the form

{ũ(k), k = 0, · · · , 2n− 1} = {0, · · · , 0, u, 0, · · · , 0}, u �= 0 (4.65)

satisfies (4.63). Note, however, that the 2n-periodic sequences which satisfy (4.63) are not
necessarily impulse sequences. For instance, for n = 2, the 3-periodic sequences of the form

{ũ(k), k = 0, · · · , 3} = {u0, u1,
u21
u0
,−u1}, u0 �= 0 (4.66)

satisfies (4.51) and are not necessarily impulse sequences of the type (4.65).

System with modeling error and arbitrary initial conditions

We now suppose that the modeling uncertainty δ in (4.1) is non zero and that the system (4.1)
starts in any initial state. Hence the system is now taken to be given by (4.1, 4.2, 4.2, 4.3) and
(4.14). As it has been previously discussed, we have:

y(k) = ỹ(k) + yδ(k),∀k, (4.67)

where ỹ(k) has been previously studied and is given by (4.25), (4.15) and (4.26). Let us
now focus on the output component yδ due to the uncertainty on the system to be studied. It
satisfies the following equations:

yδ(k + 1) = ϑT
0 φδ(k) + δ(k + 1), φδ(0), (4.68)

where the parameter vector ϑ0 and the regressor vector φδ(k) are given by

ϑ0 = (an−1 · · · a1 a0)T (4.69)

φδ(k) = (−yδ(k) · · · − yδ(k − n+ 2) − yδ(k − n+ 1))T , ∀k ≥ 1. (4.70)

It can be shown that

|yδ(k)| ≤ ||A0||k|φδ(0)|+max(|δ|, |δ|)
k−1∑
j=0

||A0||j , ∀k ≥ 1, (4.71)

where ||.|| denotes the Frobenius norm in R
n×n and A0 ∈R

n×n and B0 ∈R
n×1 are given by:

A0 =




0 1 · · · · · · 0
0 0 1 · · · 0
...

. . .
. . .

...
0 0 · · · 0 1
−a0 −a1 · · · · · · −an−1


B0 =




0
0
...
0
1


.
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Since the true system parameter vector is in Sn, i.e., the true system is asymptotically sta-
ble, then the polynomial A(ξ) = ξn +

∑n−1
i=0 aiξ

i is strictly Schur. We easily check that
det(A0−ξIn) = A(ξ) henceA0 is Schur stable. Therefore the expression in the right side in
(4.71) is bounded by a constant depending on the matrix A0, the initial condition φδ(0) and
the modeling error level δ. Denoting by yδ this constant, we obtain that the output component
yδ is bounded by a constant depending on δ and the initial condition φδ(0):

|yδ(k)| ≤ yδ, ∀k ≥ 0. (4.72)

We have the following theorem:

Theorem 4.3.11 (Bounded uncertainty set) For anyγ ∈ R+, define the2n-periodic input
sequence of the form

uγ(k) = γ.ũ(k),∀k (4.73)

whereũ is a2n-periodic sequence of the type(4.14) such that its valuesu0, · · · , u2n−1 satisfy
(4.42). Then there existsγ > 0 such that the uncertainty set̂G(k) associated with the system
(4.1) excited by the input(4.73) for this value ofγ is bounded for anyk ≥ 2n− 1.

Proof With any γ > 0, associate the input sequence {uγ(k)} described by (4.73) where the
values ui satisfy (4.42). Now remark that for any k ≥ 2n− 1, R(k) = R̃(k) + ∆(k) where
R̃(k) is defined in (4.29) and ∆(k) ∈ R

2n×2n is given by:

∆(k) =




yδ(k − 2n+ 1) yδ(k − 2n+ 2) · · · yδ(k)
...

... · · ·
...

yδ(k − 3n+ 3) yδ(k − 3n+ 4) · · · yδ(k − n+ 2)
yδ(k − 3n+ 2) yδ(k − 3n+ 3) · · · yδ(k − n+ 1)

0 0 · · · 0
...

... · · ·
...

0 0 · · · 0




where |yδ(i)| ≤ yδ,∀i, with yδ deduced from (4.71). Hence we have:

||∆(k)||∞ ≤ yδ,∀k ≥ 2n− 1. (4.74)

Now, define the function Λ : R
2n×2n → R+ by:

Λ(∆) = det(Q0 +∆) (4.75)

where Q0 is given in (4.33). Using Theorem 4.3.5 and (4.42), Λ(0) �= 0. Moreover, Λ is
continuous. Hence ∃δ1 > 0 such that: if ||∆||∞ < δ1, then Λ(∆) �= 0. Hence, ∀k ≥ 2n− 1,
∀γ > 0, if ||∆||∞/γ < δ1, then Λk(1/γ.∆) �= 0. For all k ≥ 2n− 1, we have:

Λ(∆(k)/γ) = det(Q0 +∆(k)/γ) = γ−2n det(γQ0 +∆(k)),

where the matrix ∆(k) is defined in (4.74). Moreover, ∀k = n−2 mod 2n−1, k ≥ 2n−1,
we have that R̃(k) = γ.Q0, hence, Λ(∆(k)/γ) = γ−2n det(R(k)) with R(k) defined by
(4.9). We hence proved that ∀k = n − 2 mod 2n − 1, k ≥ 2n − 1, ∃δ1 > 0 such that ∀γ,
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if ||∆(k)||∞/γ ≤ δ1, then γ−2n det(R(k)) �= 0, i.e., det(R(k)) �= 0. Take γ0 =
yδ

δ1
. Then,

∀k = n− 2 mod 2n− 1, k ≥ 2n− 1, if ||∆(k)||∞ ≤ yδ, identifying the system (4.1) using
the input defined by (4.73) with any value γ ≥ γ0 guarantees that det(R(k)) �= 0, i.e., Ĝ(k)
is bounded. The case where k �= n− 2 mod 2n, k ≥ 2n− 1 is treated similarly, replacing
Q0 by a matrix obtained after a finite number of cyclic permutations on the columns of Q0.
This concludes the proof of Theorem 4.3.11.

4.3.3 Arbitrarily small unfalsified set

We now use the results previously established to complete the design of an input sequence
yielding an arbitrarily small uncertainty set. First we prove the existence of such an input
sequence and later we see how this input can be explicitely designed.

Input sequence design for an arbitrarily small uncertainty set: existence

Many discussions involving the size of the uncertainty set and the design of optimal inputs
that would minimize such size can be found in the literature [1], [5], [11], [45].
Suppose the system (4.1) to be excited by a 2n-periodic input of the form (4.14) where
u0, · · · , u2n−1 satisfy |ui| ≤ Γ for a fixed Γ > 0. Suppose moreover that the output is
in steady-state, i.e., 2n-periodic. Let Ωm denote the intersection given by

Ωm =
m+2n−1⋂

k=m

G(k), ∀m, (4.76)

where G(k) is given in (4.5). In [11], the authors show that when the system is in steady state,
the volume Vol(Ωm) and the diameter Dia(Ωm) of Ωm satisfy:

Vol(Ωm) ≤
(δ − δ)2n

|det(R̃(m))|
, ∀m ≥ 2n− 1, (4.77)

Dia(Ωm) ≤ (δ − δ)||R̃(m)−1||
√
2n, ∀m ≥ 2n− 1, (4.78)

respectively, provided that (4.42) holds. The matrix R̃(m) is defined in (4.29). Moreover,
it is shown that these bounds are the tightest bounds that can be obtained if we have no
information on the modeling uncertainty except that it is lower and upper bounded by δ, δ.
For FIR systems in steady state, as it is shown in [11], minimization of the upperbounds in
(4.77) and (4.78) is equivalent to the minimization of det(U) and ||U−1|| respectively. In both
cases the minimizing input sequence does not depend on the unknown system parameters. In
our framework, however, R̃(m) ∼ M2UM

−1
1 where M1, M2 are given in (4.27), (4.37).

Hence the upperbound on the volume given in (4.77) is minimized for the input values such
that

{ui} = arg max
|ui|≤Γ

|det(M2UM
−1
1 )| = arg max

|ui|≤Γ
|det(U)|, (4.79)

and the upperbound on the diameter given in (4.78) is minimized for the input values such
that

{ui} = arg min
|ui|≤Γ

||M1U
−1M−1

2 ||. (4.80)
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It is shown in [11] that minimizing the bound on the volume in (4.77) does not necessarily
lead to inputs that minimize the bound on the diameter given in (4.78), and vice-versa. Indeed,
in the case where the uncertainty set would have almost all its dimensions very small but one
of these dimensions very large could lead to a small volume but a large radius. For our control
purpose, small in the sense of radius is more appropriate than small in the sense of volume.
It is interesting to remark that even in our case, the input values satisfying (4.79) do not de-
pend on the real system parameters. However, due to the structure of the system (4.1), the
input values satisfying (4.80) do depend on these unknown parameters. And also, even in the
case the radius of the uncertainty set is minimized, its value depends on the parameter vector
so it might happen that this radius will still be too large for our control purpose. Hence, from
a practical point of view, it is not clear whether it makes sense to design an input sequence
with the idea to minimize the volume or the radius of the uncertainty set, since such input
depends on the unknown system.
Alternatively, one may reason as follows: since the true system parameters lie in the uncer-
tainty set at any time, and since this uncertainty set is bounded, it is theoretically possible to
compute the input values u0, · · · , u2n−1 which would minimize the largest radius we could
possibly obtain at the next time. At time k+1, these values uk+1i are solutions of the ’worst-
case’ minimization problem:

{uk+1
i } = arg min

|ui|≤Γ
{arg max

θ∈ ˆ̃G(k)
||M1U

−1M−1
2 ||}. (4.81)

where θ = (an−1 · · · a0 bn−1 · · · a0)T . However, such an approach yields two problems.
First the optimization problem in (4.81) is rather complex. Then, even in the case where the
optimization problem in (4.81) could be performed, it is very likely that the new inputs values
at time k + 1 will differ from the previous input values at time k. Hence it is far from clear
how the 2n-periodicity assumption of the input sequence can cope with such an approach.
For these reasons, we adopt a different strategy.
Suppose that (4.1) is excited by a 2n-periodic input of the form (4.73) where u0, · · · , u2n−1
satisfy (4.42) with γ > 0. Intuitively, if γ in (4.73) increases, then the output signal to output
error (yδ) ratio is improved and therefore the effect of modeling error on these results is
reduced. Indeed, we have that y(k) = ỹ(k) + yδ(k), ∀k, where φδ(k) is bounded according
to (4.72), hence |y(k)| ≥ ||ỹ(k)|−yδ||, ∀k. ||φ̃(k)|| can be made arbitrarily large by choosing
γ sufficiently large, thus |y(k)|, and thus ||φ(k)|| can be made arbitrarily large. It follows
from (4.7) that by choosing γ sufficiently large, the width of the hyperstrips G(k), ∀k, i.e.,
the dimensions of the uncertainty set can be made arbitrarily large. From this discussion,
it follows that by choosing γ large enough, the radius of the uncertainty set can be made
arbitrarily small. We formalize this result in the following theorem:

Theorem 4.3.12 (Radius of uncertainty set) Suppose the input valuesu0, · · · , u2n−1 to be
such that(4.42) holds. Then, for anyε > 0, and for any initial conditionφ(0), there exists
γ0 > 0 such that for any valueγ ≥ γ0, the radius of the smallest sphere containingĜ(k)
obtained when the system (4.1) is excited by the input (4.73) is smaller thanε, ∀k ≥ 2n− 1.

Input sequence design for an arbitrarily small uncertainty set: algorithm

It follows from Theorem 4.3.12 that for any initial conditions φ(0), there exists a 2n-periodic
input of the form (4.73) such that the identified uncertainty set associated with the unknown
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system (4.1) is small enough so that the desired robustness criterion evoked in Section 4.2.2
is satisfied in finite time. However, since the real plant is unknown, only an iterative tuning
of the parameter design γ in (4.73) can lead to this desired input. Unfortunately, if the design
parameter γ is time-varying, the steady state input/output values also are time-varying, hence
the periodicity of the input sequence is destroyed. For this reason, we increase the input gain
slowly enough so that periodicity is approximated, but also such that it grows without bound.
This leads to an input sequence of the form:

uγ(k) = γkut(k),∀k, (4.82)

where u0, · · · , u2n−1 satisfy (4.42). The sequence {γk} in (4.82) is strictly increasing and
grows without bound, i.e.,

γk < γk+1,∀k, and lim
k→∞

γk = +∞, (4.83)

and it is asymptotically slow, i.e.,

lim
k→∞

(γk+1 − γk) = 0. (4.84)

We now introduce the main result of this chapter.

Theorem 4.3.13 (Input design) Suppose the system to be of the form(4.1) whereθ0 ∈ Cn ∩
Sn. Define the input by(4.82) where the sequence{γk} satisfies(4.83) and(4.84) and where
u0, · · · , u2n−1 satisfy(4.42). Then, for any constantε > 0, there exists a timeK ≥ 2n − 1
such that the uncertainty set̂G(k) given in(4.6) is contained in a sphere with a radius smaller
thanε, ∀k ≥ K.

Proof Suppose the input is of the form (4.82) and satisfies (4.42,4.83,4.84). Like in (4.67),
we decompose the output signal y(k) as follows:

y(k) = yγ(k) + yδ(k), (4.85)

where yγu(k) is the output sequence we would obtain if the modeling error was zero (δ = 0),
and yδ(k) is the output sequence given in (4.68), (4.70), we would obtain with the zero input
(uγ = 0). We now study the two terms yγ and yδ separately.

1. System without error modeling: we first consider the case where δ = 0. Hence we
have: yδ = 0. Let us consider any state space representation of (4.1) of the form:

x(k + 1) = Ax(k) +Buγ(k) (4.86)

yγ(k) = Cx(k),

denoting by x(k) the state vector at time k, and where A, B and C are with appropri-
ate dimensions. We denote by y0, · · · , y2n−1 the steady-state output values given in
(4.26), corresponding to the 2n-periodic input sequence {ũ(k), k = 0, · · · , 2n−1} =
{u0, · · · , u2n−1}. Hence, x̃(k), k = 0, · · · , 2n − 1 is 2n-periodic and describe the
2n possible states of the system (4.1) if the input is the 2n-periodic input (4.14) with
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values u0, · · · , u2n−1 and if the output takes the corresponding steady state values
ỹ0, · · · , ỹ2n−1. We have then for all k:

x̃(k + 1) = Ax̃(k) +Bũ(k) (4.87)

ỹ(k) = Cx̃(k).

Now, for all k, define the vector αk ∈ R
2n−1 by

αk = x(k)− γkx̃(k). (4.88)

Combining (4.82), (4.86) and (4.88), we get

αk+1 = Aαk + (γk − γk+1)x̃(k + 1). (4.89)

Since the system (4.73) is asymptotically stable, A is strictly Schur stable. Moreover,
x̃ is periodic, hence bounded. Therefore, it follows from (4.84) that:

lim
k→∞

αk = 0. (4.90)

Thus, according to (4.88) we obtain that:

lim
k→∞

(x(k)− γkx̃(k)) = 0. (4.91)

Therefore, since ỹ(k) = Cx̃(k) and yγ(k) = Cx(k) we have:

lim
k→∞

(yγ(k)− γkỹ(k)) = 0. (4.92)

(4.92) means that asymptotically, the output sequence yγ is equal to the output se-
quence ỹ we would obtain in steady-state if the input was ũ, multiplied by the gain
sequence γ relating the actual input, uγ to the 2n-periodic sequence ũ. Since γ is cho-
sen to be increasing asymptotically slow, (4.92) can be roughly interpreted as follows:
the actual output sequence becomes arbitrarily close to a 2n-periodic sequence with
time. Roughly speaking, this intuitively means that our previous results, established
in the case of a fixed 2n-periodic input sequence with constant values can be applied
asymptotically.

2. System with modeling error: we now suppose the modeling error δ to be non-zero.
Combining (4.85) and (4.88), the regressor vector φ(k) defined in (4.2) can be re-
written as:

φ(k) = φδ(k) +Dkφ̃(k) + Vk,∀k, (4.93)

defining φδ(k), φ̃(k) ∈ R
2n, Dk ∈ R

(2n)×(2n) and Vk ∈ R
2n by:

φδ(k) = (−yδ(k) · · · − yδ(k − n+ 1)0 · · · 0)T , ∀k, (4.94)

φ̃(k) = (−ỹ(k) · · · − ỹ(k − n+ 1) ũ(k) · · · ũ(k − n+ 1))T , ∀k, (4.95)

Dk = diag(γk, · · · , γk−n+1, γk, · · · , γk−n+1), (4.96)

Vk = (Cαk, · · · , Cαk−n+1, 0 · · · , 0)T . (4.97)
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Then, for any k ≥ 2n− 1, using (4.93) we can rewrite the matrix R(k) in (4.9) as:

R(k) = ∆(k) + Vk +DkQ0 + Ek, (4.98)

where Q0 is given in (4.33), ∆(k) is given in (4.74) and for any k ≥ 2n−1, the
matrices Vk, Ek ∈ R

2n×2n are given by:

Vk = [Vk · · ·Vk−1 Vk−2n+1],∀k ≥ 2n− 1,

Ek = [0 (Dk+1 −Dk)φ̃(k + 1) · · · (Dk−2n+1 −Dk)φ̃(k − 2n+ 1)]

where Dk is defined in (4.96). Now, it follows from (4.84) that

lim
k→∞

Ek = 0. (4.99)

And using (4.90), we have that
lim

k→∞
Vk = 0. (4.100)

Moreover, by construction of the input (4.82), it follows from Theorem 4.3.5 that
det(DkQ0) �= 0. Since the matrix ∆(k) is bounded in norm according to (4.74), by
continuity of the determinant, we conclude from (4.98), (4.99) and (4.100) that there
exists a timeK ≥ 2n− 1 such that det(R(k)) �= 0, ∀k ≥ K. From (4.8), this implies
that the uncertainty set based on 2n successive measurements is bounded after a finite
time. Finally, since the input gain grows without bound, ||φ(k)|| grows also without
bound and therefore (4.7) implies that the radius of the uncertainty set based on 2n
successive measurements can be made arbitrarily small.

Example 4.3.14 Examples of sequences {γk}k∈N that satisfy (4.83) and (4.84) are γk =
log k and γk =

√
k. We now illustrate our design method with an example in the first order

case n = 1. We choose (a0, b0) = (0.8, 3) to be the real unknown system, and the uncertainty
δ is taken to be a random signal taking its values in [−0.5, 0.5]. We suppose that the known
bounds on δ are such that −δ = δ = 0.6. Finally, we choose u0 = 1.5 and u1 = 0.3. For the
gain sequence γk =

√
k, the set-membership identification using the input u(k) = γkut(k),

t(k) = k mod 2 ∀k is illustrated in Figure 4.2. For the gain sequence γk =
√
k, the set-

membership identification using the input u(k) = γkut(k), t(k) = k mod 2 ∀k is portrayed
in Figure 4.3. In both cases, the obtained membership set is plotted for 30 iterations, together
with a measure of the radius of the smallest outer bounding sphere centered in (a0, b0). As
expected, both cases lead an uncertainty set which decreases uniformly with time.

Remark 4.3.15 Because of the increase of the input gain γ, our approach might not look
appealing at first sight. However, since the system is unknown, no information tells us a
priori what value this gain should take so that the uncertainty set becomes small enough to
allow certainty equivalent control to be started. Hence to increase γ is somehow unavoidable.
Having observed that increasing the gain is necessary for control purposes, it should also
be emphasized that within a complete adaptive control scheme the input gain will never be
increased more than necessary. Indeed, the idea is to no longer step γk as soon as the uncer-
tainty set is small enough to be useful for control. It follows from Theorem 4.3.13 that this
happens after a finite number of iterations, which guarantees that the input sequence stays
bounded during identification.
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Membership sets and actual parameters
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Figure 4.2: Set membership identification γk =
√
k, (a0, b0) = (0.8, 3).
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Figure 4.3: Set membership identification γk =logk, (a0, b0) = (0.8, 3).
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4.4 Conclusions

In this chapter an input sequence design has been proposed in the context of set-membership
identification for control, to ensure that the uncertainty set becomes arbitrarily small with
time. This guarantees that within finite time, a certainty equivalence type of control strategy
can be safely started, ’safely’ in the sense that the control design can rely on any model in
the uncertainty set. Because the system is unknown, the time at which the designer can rely
on the uncertainty set to control this unknown plant cannot be given a priori. However, the
crucial point in our approach is that the input gain will not grow more than it is necessary
for control. Other input structures may be better than 2n-periodic inputs in the sense that a
strongly robust uncertainty set would be obtained in less time or putting less energy in the
identification input. However, the choice of a 2n-periodic input structure is here motivated
by its simple description and analysis.
In this approach, a unique design parameter γ is required, and the choice of this parameter
is left free to the designer, provided that it increases without bound and is asymptotically
slow. Therefore the computational complexity of the proposed strategy is rather low. Note
however that the time at which the control phase can start depends explicitely on the increase
rate of the design parameter and it is still not clear how to choose the sequence γ so that the
uncertainty set shrinks fast enough to achieve strong robustness but at the same time slowly
enough not to exceed the minimum input energy level required to achieve strong robustness.
In comparison with many input designs proposed in the literature ([1], [5], [11], [12]), our
approach is not optimal in the sense that it is not based on the selection of inputs which would
optimize some criterion related to the size of the uncertainty set. However, such optimal
inputs would depend on the unknown system. Therefore these methods yield only estimations
of such optimal inputs, and the ”goodness” of these estimations is related to the uncertainty
set. The larger the uncertainty set is, the poorer the estimate inputs are expected to be. For this
reason, it is not clear whether they lead to a smaller uncertainty faster. This is an interesting
problem which deserves further investigation. Finally, in this approach we considered the
two following assumptions: the system to be controlled is asymptotically stable and its order
n is exactly known. If any of these two assumptions is violated, then the guarantee that
the uncertainty will shrink uniformly with time does not hold anymore. These are serious
limitations which should be considered in future work.
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Chapter 5

Strongly robust adaptive control

This chapter deals with adaptive control incorporating the notion of strong robustness in-
troduced in Chapter 3. The process to be controlled belongs to the class of systems defined
in Chapter 2 and the control objective belongs to the class of control objectives specified in
Chapter 2. Adaptive control based on strong robustness splits in two phases: as long as a
criterion checking strong robustness of the uncertainty set containing the true system to be
controlled is not satisfied, no control action is undertaken and attention is paid to identi-
fication only. Once the above criterion is satisfied, then effort is put on control, by means
of a classical certainty equivalence type of strategy. After presenting the general scheme of
adaptive control based on strong robustness, analysis shows that the limitations exposed in
Chapter 1 arising in standard certainty equivalence control systems are overcome by using
such a control approach. In particular, when strong robustness is achieved, which is guaran-
teed to happen in finite time using the identification input designed in Chapter 4, no pole/zero
cancellation phenomenon can occur. Moreover, the time-varying model-based controller will
stabilize the true plant to be controlled, irrespectively of the adaptation speed.
Further, to shed some light on the introduced method, a more detailed analysis of strongly
robust adaptive pole placement is given and a simulation example illustrates the effectiveness
of this approach.

5.1 Introduction

In Chapter 1, we have seen that traditional adaptive control of linear time-invariant systems
is based on the certainty equivalence principle. Rather simple from a computational point of
view, this paradigm yet suffers from three main drawbacks. First controllability of the esti-
mated is usually not guaranteed in practice, which may result in the paralysis of the adaptive
control system. Secondly, insufficient initial knowledge on the true system might involve
destabilizing model based controllers, in which case bad transients may be expected. Finally,
the time variations of the model and hence of the model-based controller could be so fast as to
disrupt asymptotic stability of the control system. To avoid these three undesirable phenom-
ena, we ought to design an adaptive control scheme based on a test checking on-line whether
we risk to meet these three problems exists or not so as to decide when to put more effort on

89
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identification or control.
Suppose now that the following assumption holds.

Assumption 5.1.1 The true system parameterθ0 belongs to a known subset of systems in
G ∈ Pn andG is strongly robust with respect to the (given) control objective.

Under Assumption 5.1.1, a traditional adaptive control scheme using certainty equivalence
could be started, keeping in G the model on which to base the control design at any time.
Then, due to strong robustness of the set G (see Section 2.2 in Chapter 2), the model se-
quence is guaranteed to keep controllability and to keep stabilizing the real unknown plant,
no matter how fast adaptation might go. Unfortunately, Assumption 5.1.1 requires that a large
information on the system is available, which is not satisfied most of the time in the initial
set-up of adaptive control approaches. Hence, rather than supposing a priori that Assump-
tion 5.1.1 holds, one can raise the following question: how to achieve the situation where we
would know a strongly robust set of systems Pn containing the true system to be controlled?
In this case, then the control task could be carried out using a traditional adaptive control
strategy.

Inspired by this discussion, our aim is to design an adaptive control approach splitting in
two phases [27]: as long as no conclusion can be drawn concerning strong robustness of the
model set, which indicates that the danger of facing the above three undesirable effects exists,
we do not undertake any control action. Instead, we collect information on the true system to
be controlled, in such a way that strong robustness will be achieved in finite time (see Chapter
4). We shall call identification phasethis first phase. Once a criterion indicating when the
model set is strongly robust is satisfied, the adaptive system switches to the control phase. In
this second phase, control can be started using a classical certainty equivalence strategy since
from that time on, the model is and will stay controllable while the time-varying model-based
controller is guaranteed to stabilize the true system at any time.

This chapter is organized as follows. We first formulate the problem statement this chapter
deals with. Then, we describe the general scheme of adaptive control based on strong robust-
ness. Further, the analysis of the algorithm is provided. Next we focus our interest on pole
placement design based on strong robustness, for which a more detailed analysis and sim-
ulation examples are given. Finally, potential modifications of the general adaptive control
scheme are addressed for further research.

5.2 Motivation

We first remind the assumptions made on the system to be controlled and on the control
objective treated in this thesis (see Assumption 2.1.13).

Assumption 5.2.1 (System) The system to be controlled is of the form

y(k + 1) = (θ0)Tφ(k) + δ(k), φ(0),

where
θ0 = (a0n−1 · · · a00 b0n−1 · · · b00)T ∈ Cn ∩ Sn (5.1)
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is the unknown parameter vector andφ is the regressor vector given by

φ(k) = (−y(k) · · · − y(k − n+ 1) u(k) · · · u(k − n+ 1))T ∈ R
2n. (5.2)

The model uncertaintyδ is unknown-but-bounded with known boundsδ, δ (Assumption 2.1.10),
i.e., is such that

δ ≤ δ(k) ≤ δ,∀k. (5.3)

The control objective is fixed and satisfies the following assumption.

Assumption 5.2.2 (Controller) The map

f : θ ∈ Cn �−→ f(θ) ∈ R
1×(2n−1) (5.4)

assigning any systemθ = (an−1 · · · a0 bn−1 · · · b0)T ∈ Cn with its controller f(θ) ∈
R
1×(2n−1) leading to the control law

u(k) = f(θ)x(k),∀k, (5.5)

wherex is the state vector given by

x(k) = (y(k) · · · y(k − n+ 1) u(k − 1) · · · u(k − n+ 1))T ∈ R
2n−1. (5.6)

is single valued and continuous, and such that the resulting closed-loop system defined by

x(k + 1) = (A(θ) +B(θ)f(θ))x(k) (5.7)

y(k) = Cx(k)

is asymptotically stable (see Definition 3.1.1). We recall thatA(θ),B(θ) andC are given by:

A(θ) =




−an−1 · · · · · · −a1 −a0 bn−2 · · · · · · b1 b0
1 0 · · · 0 0 0 · · · · · · 0 0

0
. . .

...
...

...
...

...
...

. .. 0
...

...
...

...
... 1

...
...

...
...

0 · · · · · · 0 0 0 · · · · · · 0 0
... 0

... 1
...

...
...

...
... 0

. . .
...

...
...

...
...

...
.. . 0

...
0 · · · · · · 0 0 0 · · · · · · 1 0




(5.8)

B(θ) =
[
bn−1 0 · · · 0 1 0 · · · · · · 0

]T
(5.9)

C =
[
1 0 0 · · · 0

]T
. (5.10)

We now formulate the problem addressed by this chapter.
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Problem Statement 5.2.3 (Adaptive control objective) The desired control objective is fixed
and satisfies Assumption 5.2.2. Given the measurements{u(k), y(k), k = 0, 1, 2, · · · } gen-
erated by(5.1), the adaptive control objective is twofold:

• generate a sequence of inputs such that asymptotically the applied inputs equal the
inputs that would have been calculated on the basis of the true system parameters,
i.e.,u(k)→ f(θ0)x(k) ask →∞ with f defined in Assumption 5.2.2;

• do not allow the adaptive system to involve any destabilizing controller, at any time of
the design.

Remark 5.2.4 The controllability assumption in (5.1) is motivated by the control objective
in Problem Statement 5.2.3. The assumption that the true system to be controlled (5.1) is
open-loop asymptotically stable is for the sake of open-loop identification as we will see in
the next section. Hence, as it follows from Assumption 5.2.2, the control objective is not
only to keep the real plant stable but also to improve its performance. The assumption that
the uncertainty δ is unknown-but-bounded according to (5.3) is chosen as the simplest case
of approximate modeling. In particular, no stochastic assumptions on the modeling error are
made. Moreover, the assumed structured of the uncertainty allows us to use the well-studied
set-membership identification approach introduced in Section 2.2.

5.3 Strongly robust adaptive control: description

The general scheme of adaptive control systems based on strong robustness is depicted in
Figure 5.1. As previously mentioned, two phases are distinguished in this control system
scheme: the identification phase and the control phase. In the identification phase, data mea-
surements are used to compute the set of all model candidate models that are consistent with
these measurements. Then it is checked whether all the elements in this set are controllable
or not. When controllability is guaranteed over the model set, it is then checked whether this
set is strongly robust or not. When strong robustness is achieved, the system switches to the
control phase where a classical certainty equivalence type of control strategy is applied: at
each new measurement the model is updated within the strongly robust model set and the
controller is designed on this model. Applying this controller on the actual plant leads to new
input-output measurements, and subsequently, the uncertainty set, the model and the con-
troller can be tuned more accurately so as to improve the closed-loop performance. Next, we
describe in more details each block appearing in Figure 5.1.

5.3.1 The identification phase

During the identification phase, three tasks are completed at each new input/output measure-
ment: the membership set is first computed, it is then checked whether all its elements are
controllable or not. When controllability is achieved, then it is checked whether the mem-
bership set is strongly robust or not. Finally, if strong robustness is obtained over the whole
model set, the adaptive scheme exits the first phase, otherwise new measurement data are
collected and the three previous steps are re-iterated.
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Initial model

Apply the identification input

Compute the membership set Ĝ(k)

Ĝ(k) is strongly robust?

no

no

no
yes

yes

yes

Tcont

Tswitch

Compute the model θ̂(k)

Apply the controller f(θ̂(k))

Desired performance obtained?

Compute Ĝ(k)

Identification phase

Control phase

Ĝ(k) ⊂ Cn?

k = k + 1

k = k + 1

k = k + 1

Figure 5.1: Strongly robust adaptive control: iterative scheme
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Identification input

During the identification phase, we apply the 2n-periodic input sequence constructed in Sec-
tion 4.3.3, Chapter 4 defined as follows:

uγ(k) = γkut(k),∀k, (5.11)

where u0, · · · , u2n−1 are arbitrarily chosen but satisfy the condition:

gcd(
2n−1∑
i=0

uiξ, ξ
2n − 1) = 1, (5.12)

and the gain sequence {γk} in (5.11) is strictly increasing and grows without bound, i.e.,

γk < γk+1,∀k, and lim
k→∞

γk = +∞, (5.13)

and it is asymptotically slow, i.e.,

lim
k→∞

(γk+1 − γk) = 0. (5.14)

We motivate the choice of such an input in Section 5.4.1.

Compute the membership set Ĝ(k)
The membership set at time k contains all candidate models, described by all the parameter
vectors θ consistent with the input/output data measurements {u(i), y(i)}i≤k generated by
the true system (5.1) when excited by the input (5.11, 5.13, 5.14). As shown in Section 2.2 in
Chapter 2, Ĝ(k) is the polyhedron defined by

Ĝ(k) =
k⋂

i=1

G(i), (5.15)

where G(i), i = 1, · · · , k is defined by

G(k) = {θ ∈ Pn : δ ≤ y(k)− θTφ(k − 1) ≤ δ}. (5.16)

Hence Ĝ(k) is computed as the intersection of the 2k half-spaces in R
2n defined by:

{θ ∈ Pn : y(k)− θTφ(k − 1) ≤ δ}, ∀i ≤ k (5.17)

{θ ∈ Pn : y(k)− θTφ(k − 1) ≥ δ}, ∀i ≤ k. (5.18)

Remark 5.3.1 The set defined in (5.15) might contain uncontrollable systems or systems
that are not asymptotically stable. However, from our prior knowledge, the true system θ0 is
open-loop asymptotically stable and controllable. Hence it seems that a ”good” model should
also be open-loop asymptotically stable and controllable, in which case we could substitute
to the model set θ̂(k) obtained in (5.15) with its subset of controllable and asymptotically
stable elements Ĝ(k) ∩ Sn ∩ Cn. This suggests to perform some projections of the model
set Ĝ(k) on the set Sn ∩ Cn so as to capture the features of the true system in the model
set. Nevertheless, the reason why we do not proceed in this way is that the set Sn ∩ Cn is in
general neither convex nor closed, hence the resulting intersection Ĝ(k)∩Sn∩Cn might be in
turn not convex nor closed. However, convexity of the model set are fundamental properties
when performing a convex optimization method for the model estimation.
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Check controllability of any model in Ĝ(k)
In contrast to a large number of adaptive control approaches [32], [33], [96], [70], the uncer-
tainty set (5.15) is a priori not assumed to be a subset of the class of controllable systems.
However, as we see further, the next step in the algorithm depicted in Figure 5.1, consisting
in checking the strong robustness of the uncertainty set, requires that all models are control-
lable. As a consequence, it is fundamental that the set of estimate models Ĝ(k), on which the
control design will be based, is a subset of Cn in finite time.
We now proceed in two steps. We first show that the use of the identification (5.11, 5.13,
5.14) leads in finite time to an uncertainty set which is a subset of the set of controllable
systems. Then, we derive a test that explicitely measures a time at which boundedness is
achieved. Subsequent to this discussion, the algorithm which allows us to test controllability
over the uncertainty set is given.

The first question we need to investigate is hence the following: how to choose an input
sequence leading to a membership set whose elements are all controllable in finite time?
Since the true system θ0 is controllable, the distance from θ0 to the set of uncontrollable
systems in Pn is strictly positive, hence there exists an open neighborhood of θ0 which is
a subset of Cn. Therefore, if the uncertainty set Ĝ(k) is sufficiently small, i.e., if Ĝ(k) is
bounded in R

2n and if the radius of the smallest sphere containing Ĝ(k) is sufficiently small,
then Ĝ(k) ⊂ Cn . Based on this discussion, we have the following result.

Theorem 5.3.2 (Identification input) Given any setΩ ⊂ Pn, let ρ(Ω) denotes the radius
of the smallest sphere containingΩ contained inPn. By convention, ifΩ is not bounded,
ρ(Ω) = ∞. Consider the system given by(5.1). Suppose that the identification inputu is
such that the membership set given in(5.15) satisfies:

lim
k→∞

ρ(Ĝ(k)) = 0. (5.19)

Then there existsT1 such thatĜ(k) ⊂ Cn, ∀k ≥ T1.

Hence, it follows from Theorem 5.3.2 that when resorting to an input sequence satisfying
Theorem 4.3.13 in Chapter 4, there exists a finite time T1 such that Ĝ(k) ⊂ Cn, ∀k ≥ T1.

After we have shown that all models in the uncertainty set become controllable in finite time
if the input sequence is appropriately chosen, we now focus on the following problem: at
each time instant k, how to check in practice whether or not Ĝ(k) ⊂ Cn? Indeed, the time
at which the condition Ĝ(k) ⊂ Cn holds should be computed, so that the next task of the
algorithm starts in finite time. In this respect, the following result has been established in
Chapter 3.

Theorem 5.3.3 There exists a timeTbound ≥ 2n− 1 such that

det[φ(Tbound) φ(Tbound − 1) · · ·φ(Tbound − 2n+ 1)] �= 0. (5.20)

Proof: the proof directly follows from Theorem 4.3.13.
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We saw in Chapter 4 that (5.20) is equivalent to say that the intersection formed by the
2n hyperstrips G(Tbound), · · · , G(Tbound − 2n + 1) is bounded. Hence, (5.20) guarantees
that the model set becomes bounded in finite time, and at the same time provides us with a
way to check practically whether the uncertainty set is bounded or not. Moreover, we have:
∀k ≥ Tbound, Ĝ(k) is bounded.

Now, once the test (5.20) allowing us to verify boundedness of the uncertainty set is fulfilled,
we proceed as follows in order to check controllability of the members in the model set.

Algorithm 5.3.4 (Check controllability of any system in Ĝ(k)) ∀k ≥ Tbound, denote by
θ∗(k) the center of the smallest sphere of systems inPn containingĜ(k). Form the smallest
orthotopic set̂Gb(k) of systems containinĝG(k), with centerθ∗(k). Recalling that any system
θ ∈ Pn has coordinates:

θ = (an−1 · · · a0 bn−1 · · · b0)T , (5.21)

thenĜb(k) is defined by

Ĝb(k) = {θ ∈ Pn : ai(k)∗ −∆ai(k) ≤ ai ≤ ai(k)∗ +∆ai(k),
bi(k)∗ −∆bi(k) ≤ bi ≤ bi(k)∗ +∆bi(k), i = 0, · · · , 2n− 1}, (5.22)

where the2n dimensions∆ai(k) > 0,∆bi(k) > 0, i = 0, · · · , 2n− 1 of Ĝb(k) are such that

∆ai(k) = min{∆ > 0 : ai(k)∗−∆ ≤ ai ≤ ai(k)∗+∆,∀θ ∈ Ĝ(k)},∀k ≥ Tbound, (5.23)

and

∆bi(k) = min{∆ > 0 : bi(k)∗−∆ ≤ bi ≤ bi(k)∗ +∆,∀θ ∈ Ĝ(k)},∀k ≥ Tbound. (5.24)

Further, apply Theorem 3.3.5 to check whetherĜ(k) ⊂ Cn or not: form the Sylvester matrix
S∆(k) ∈ R

(2n−1)×(2n−1) defined by

S∆(k) =




∆a0(k) ∆a1(k) · · · 1 0 · · · 0

0 ∆a0(k) · · · ∆an−1(k) 1
. ..

...
...

. . .
. .. 0

0 · · · 0 ∆a0(k) ∆a1(k) · · · 1
... ∆b0(k) ∆b1(k) · · · ∆bn−1(k)
... ∆b0(k) ∆b1(k) · · · ∆bn−1(k) 0

0 ··· ··· ··· . ..
∆b0(k) ∆b1(k) · · · ∆bn−1(k) 0 · · · 0




.

Similarly, form the Sylvester matrixS∗(k) associated to the center systemθ∗(k) defined by
(5.25) replacing the terms∆ai(k), ∆bi(k) by a∗i (k) and b∗i (k) respectively. Denoting by
σ, σ the smallest and largest singular value respectively, we have the following result (see
Theorem 3.3.5 in Chapter 3). If

σ(S∆(k)) < σ(S∗(k)), (5.25)

thenĜ(k) ⊂ Cn.
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Now, it follows from Theorem 5.3.2 and Theorem 4.3.13 that when resorting to the in-
put sequence (5.11, 5.13, 5.14), there exists a finite time Tcont such that (5.25) is satisfied
∀k ≥ Tcont. Hence Ĝ(k) ⊂ Cn, ∀k ≥ Tcont.

Remark 5.3.5 The test proposed in Algorithm 5.3.4 to check whether a given uncertainty
set is in the set of controllable systems or not might be quite conservative, firstly because we
enclose the set to be tested in an outer bounding set, but also because (5.25) only provides us
with a sufficient condition for non-singularity of the Sylvester matrices associated with any
model in the uncertainty set. Therefore, if the initial set of systems contains nearly uncontrol-
lable systems, it might happen that the set to be tested is contained in the set of controllable
systems whereas the outer-bounding polytope (5.22) contains uncontrollable systems. How-
ever, the input (5.11, 5.13, 5.14) guarantees that the uncertainty set, and therefore the outer-
bounding polytopic set (5.22), become sufficiently small in finite time. Hence using such an
input ensures that (5.25) holds in finite time.

Achieve and check strong robustness

The test indicating when to switch to the second phase of the algorithm consists in checking
whether Ĝ(k) is strongly robust or not. Clearly, since the objective is to perform control of
the unknown plant, we must guarantee that the control phase starts in finite time, i.e., we
must ensure that the model set Ĝ(k) is strongly robust in finite time. This remark raises two
key issues: first, it is crucial that the identification input yields a strongly robust model set in
finite time. Then, we must be able to test practically at each measurement whether the model
set is strongly robust or not. We now discuss these two issues and subsequently derive an
algorithm to test strong robustness of the uncertainty set.
Let us first concentrate on the following question: how to choose an input sequence leading
to a strongly robust membership set in finite time? Here we recall the following theorem
established in Chapter 3.

Theorem 5.3.6 (Existence of strongly robust open sets of systems) Around any system
θ0 ∈ Cn there exists an open strongly robust neighborhood of systems inCn.

In the sequel, if the uncertainty set Ĝ(k) is sufficiently small, i.e., if Ĝ(k) is bounded in R
2n

and if the radius of the smallest sphere containing Ĝ(k) is sufficiently small, then it is strongly
robust. Based on this discussion, we have the following result.

Theorem 5.3.7 (Identification input) Given any setΩ ⊂ Pn, let ρ(Ω) denotes the radius
of the smallest sphere containingΩ contained inPn. By convention, ifΩ is not bounded,
ρ(Ω) = ∞. Consider the system given by(5.1). Suppose that the identification inputu is
such that the membership set given in(5.15) satisfies:

lim
k→∞

ρ(Ĝ(k)) = 0. (5.26)

Then there existsTSR such thatĜ(k) is strongly robust,∀k ≥ TSR.

Therefore, in the case where the input sequence is such that Ĝ(k) is bounded and shrinks
uniformly with time, a strongly robust uncertainty set is identified in finite time, hence the
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adaptive system described in Figure 5.1 switches to the control phase in finite time. As matter
of fact, it has been shown in Section 4.3, Chapter 4 that the input (5.11, 5.13, 5.14) is such
that Ĝ(k) is bounded and shrinks uniformly with time.
It is important to point out, and even emphasize, that after the adaptive scheme has switched
to the control phase, identification proceeds in a passive way, it is subject to control. Hence,
the identification input involved in Theorem 5.3.7 is truncated in the finite switching time,
meaning that we do not require the uncertainty set to shrink indefinitely, i.e., we do not re-
quire the the unknown parameter vector θ0 to be identified exactly.

Not only it is crucial to ensure that the membership set is strongly robust in finite time, but
the adaptive scheme should also be able to measure at what time this condition is satisfied, so
that the switch can be activated. Otherwise we loose all the benefit that the introduction of the
notion of strong robustness in adaptive control may bring. Hence, it is fundamental to have
an explicit test to check at each measurement whether the updated unfalsified set is strongly
robust or not. We remind that at this step of the design, any model in the membership set
is guaranteed to be controllable. Hence, the desired test amounts at checking a each time if
a given set of controllable systems is strongly robust. The construction of a necessary and
sufficient test for characterizing strongly robust sets in Cn is not trivial, and still requires
further investigation. However, note that what we essentially need is a sufficient test for
strong robustness. In this respect, we recall the following theorem obtained in Chapter 3.

Theorem 5.3.8 The setĜ(k) ⊂ Cn is strongly robust if the following inequality holds:

∀θ1, θ2 ∈ Ĝ(k), ‖f(θ2)− f(θ1)‖ ≤ rC(A(θ1) +B(θ1)f(θ1), B(θ1, I2n−1), (5.27)

where∀θ ∈ Cn, the matricesA(θ) andB(θ) are given in(5.8), (5.9) and f(θ) is the con-
troller given in Assumption 5.2.2 andrC(A(θ)+B(θ)f(θ), B(θ, I2n−1) denotes the complex
stability radius of the matrix(A(θ) + B(θ)f(θ)) with respect to the perturbation structure
(B(θ), I2n−1) (see Definition 3.2.3).

We have the following result.

Theorem 5.3.9 If the identification input sequence{u(k)} is such that
limk→∞ ρ(Ĝ(k)) = 0, whereρ(Ĝ(k)) denotes the radius of the smallest sphere containing
Ĝ(k), then there existsk1 such that(5.27) is satisfied.

Proof: suppose the identification input to be such that limk→∞ ρ(Ĝ(k)) = 0. It follows from
Remark 5.3.5 that there exists a time K such that ∀k ≥ K, Ĝ(k) ⊂ Cn. Then by continuity
of the map f , we have that limk→∞ ρ(f(Ĝ(k))) = 0, where ρ(f(Ĝ(k))) denotes the radius
of the smallest sphere containing f(Ĝ(k)) for k ≥ K. Therefore, ∀ε > 0, ∃k1 ≥ K such
that ∀f, f ′ ∈ Ĝ(k1) then ||f − f ′|| ≤ ε. Now, choose any θ1 ∈ Ĝ(k1) and ε = rC

A1+B1f(θ1)
,

where rC

A1+B1f(θ1)
denotes the complex stability radius of the Schur matrix A1 + B1f(θ1)

with respect to the perturbation structure (B1, I2n−1) as defined in Definition 3.2.3 where
A1 and B1 are obtained on the basis of θ1 according to (5.8) and (5.9)respectively. We
then have: ∀f, f ′ ∈ Ĝ(k1) then ||f − f ′|| ≤ rC

A1+B1f(θ1)
. Hence, ∀θ2 ∈ Ĝ(k1) we have:

||f(θ1)−f(θ2)|| ≤ rC

A1+B1f(θ1)
, this for any θ1 ∈ Ĝ(k1) . Thus (5.27) is satisfied in k = k1.

Clearly, this implies that (5.27) is satisfied, ∀k ≥ k1.

The preceding discussion yields the following algorithm.
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Algorithm 5.3.10 (Check strong robustness of Ĝ(k)) ∀k ≥ Tcont, if

∀θ1, θ2 ∈ Ĝ(k), ‖f(θ2)− f(θ1)‖ ≤ rC(A(θ1) +B(θ1)f(θ1), B(θ1, I2n−1), (5.28)

using the notation of Theorem 5.3.8, thenĜ(k) is strongly robust.

The identification input design (5.11, 5.13, 5.14) provides us with an uncertainty set that
satisfies Theorem 5.3.9. Hence the sufficient test for strong robustness (5.28) is satisfied in
finite time, allowing the overall scheme to switch to the control phase in finite time. Let
Tswitch denote this switching time.

Remark 5.3.11 We clearly have: 2n ≤ Tbound ≤ Tcont ≤ TSR ≤ Tswitch.

5.3.2 The control phase

In this part we suppose that the set Ĝ(k) defined in (5.15) has been shown to be strongly
robust, i.e., k ≥ Tswitch. The control phase is then started and relies on a classical certainty
equivalence type of strategy. During this phase, two main tasks are performed: the model is
updated, and the controller is designed on the basis of this estimate. Applying this controller
to the real system leads then to new data measurement on the basis of which the membership
set will be updated.

Compute the model θ̂(k): at each measurement, the model θ̂(k) of the true parameter vector
θ0 is updated, leading to the new model θ̂(k + 1). Since θ0 ∈ Ĝ(k), we naturally choose
θ̂(Tswitch) as a member of Ĝ(Tswitch), and ∀k ≥ Tswitch, the model θ̂(k + 1) is computed
as the orthogonal projection of the previous estimate θ̂(k) on the set Ĝ(k + 1) presented in
Section 2.2.3, Chapter 2. As discussed in Remark 5.3.1, the convexity of Ĝ(k) is crucial here
in order to use orthogonal projection. This leads to the following update procedure introduced
in Chapter 3:

θ̂(Tswitch) is arbitrarily chosen in Ĝ(Tswitch);
θ̂(k + 1) = arg min

θ∈Ĝ(k+1)
{(θ − θ̂(k))T (θ − θ̂(k))}, ∀k ≥ Tswitch. (5.29)

Hence, this update law is such that if the new measurement at time k does not bring any new
information pertaining the updating of the set Ĝ(k), then the model θ̂(k) is not updated.

Remark 5.3.12 If ||φ(k − 1)|| = 0 in (5.16), then the set G(k) is empty. Hence, if the new
model at time k was obtained as the projection of the previous model on the new set G(k)
(as it is done, e.g., in [72]), the case where ||φ(k − 1)|| = 0 would cause numerical problem.
This problem does not occur in our approach since at each time in the control phase, the
new estimate θ̂(k) is obtained by orthogonal projection of the previous estimate on the non-
empty set Ĝ(k) given in (5.15). According to (5.29), if ||φ(k − 1)|| = 0 occurs (which is
a priori possible in the control phase), G(k) = ∅, hence Ĝ(k) = Ĝ(k − 1) �= ∅ and hence
θ̂(k) = θ̂(k − 1) is defined.
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Design a controller: ∀k ≥ Tswitch, we have: Ĝ(k) ⊂ Cn, hence a controller can be based on
the model at any time. Following Assumption 5.2.2, at each time k ≥ Tswitch, we compute
the controller f(θ̂(k)), leading to the updated control input law:

u(k) = f(θ̂(k))x(k),∀k ≥ Tswitch (5.30)

This controller is then applied to the real system (5.1) and a new data measurement
(y(k + 1), φ(k)) is obtained from the real closed-loop system:

y(k + 1) = (θ0)Tφ(k) + δ(k) (5.31)

u(k) = f(θ̂(k))x(k),

where the regressor vector φ and the state vector x are given by

φ(k) = (−y(k), · · · ,−y(k − n+ 1), u(k), · · · , u(k − n+ 1))T ∈ R
2n, (5.32)

and (5.6) respectively. Based on the newly measured data, the new membership-set is updated
according to (5.15).

5.4 Strongly robust adaptive control: analysis

This section is devoted to the analysis of the adaptive control scheme proposed in Section
5.3.

5.4.1 Finite switching time

The identification input (5.11, 5.13, 5.14) is constructed so that the uncertainty set is proved
to strongly robust in finite time (Tswitch). Therefore the control phase is guaranteed to start
in finite time. Obviously, this switching time depends on the characteristics of the system
to be controlled (initial conditions and value of the unknown parameter vector θ0), on the
characteristics of the uncertainty δ and on the chosen identification input. Intuitively, the
switch from the identification phase to the control phase is expected to occur faster (in time
or in term of energy level of the identification input) in the case of an uncertainty which is
small in norm compared with the measured data. In contrast, for large uncertainty level (and
conservative bounds δ, δ) we expect that more measurements or a higher input energy level
will be necessary before the system switches to the control phase. But it seems quite natural
that little prior knowledge on the system to be controlled requires a longer learning phase or
a higher cost in terms of energy put in the identification input.

5.4.2 Convergence of the model to the real system

The convergence of θ̂(k) to the true parameter vector is not a-priori guaranteed and is depen-
dent on the input-output data that specify the uncertainty set Ĝ(k). Note that the proposed
scheme has the property of neutrality, i.e., in the case where the present uncertainty set is not
falsified by the new input-output measurement, the model and hence the model-based con-
troller are not updated. Hence, the adaptation process might stop during the control phase,
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leading to a frozen adaptive system. Of course, such a case does by no means imply that the
model error is zero, but simply indicates that the newly observed data do not bring any useful
information with respect to the identification process.
Now, we emphasize that the quality of the model is measured by its control performance and
not by its closeness to the real system. Indeed, the distance between the true model and its
estimate might be very small, while the true system might be controllable and the estimate
not controllable. Hence, a model is good enough if it leads to good control performance. In
the sequel, convergence of the model to the real system is neither guaranteed nor necessary
in the presented adaptive control approach.
The model update law (5.29) provides the following properties [72]:

Property 5.4.1 The model error sequence{θ̂(k)− θ0} is bounded and non increasing:

‖ θ̂(k)− θ0 ‖≤‖ θ̂(k − 1)− θ0 ‖, ∀k (5.33)

and is asymptotically slow, i.e,

lim
k→∞

(‖ θ̂(k)− θ0 ‖ − ‖ θ̂(k − 1)− θ0 ‖) = 0. (5.34)

It hence follows from these two properties that the parameter vector converges:

∃θ̄ ∈ Cn : lim
k→∞

θ̂(k) = θ̄. (5.35)

However, θ̄ = θ0 does not necessarily holds.

5.4.3 Transient analysis

The proposed adaptive control approach mainly differs from classical approaches in the first
phase, therefore the transient analysis is key in its analysis. Intuitively, since at no time the
adaptive control system based on strong robustness involves any destabilizing controller, the
transient behavior is expected to be superior to classical certainty equivalence-based schemes
where, in contrast, the model-based controller may be temporarily destabilizing. A rigorous
proof of this intuitive result in the case of pole placement can be found in the next section of
this chapter.
In addition it is worth recalling that, even in the case where at each frozen time instant the
closed-loop system would be obtained, stability of the time-varying system is not necessarily
maintained in classical approaches if adaptation is too fast. In comparison, at no time in our
strategy a destabilizing controller is applied to the real system, and closed-loop stability is
guaranteed, regardless how fast the adaptation goes. Of course, the use of the identification
input of the type (5.11,5.13, 5.14) may still generate poor transients, but this appears to be the
inevitable price to be paid due to insufficient prior knowledge, whereas in classical adaptive
control approaches the bad transients serve no purpose.

5.4.4 Asymptotic analysis

Once the adaptive system has switched to the control phase, which is guaranteed to occur
in finite time, a classical adaptive control approach is used. Hence the asymptotic analysis
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is fairly standard [72]. The main characteristic of the asymptotic behavior, in the case of
adaptive Pole placement design [72] and adaptive Linear Quadratic control design [95], is
that the applied control law converges to the control we would obtain when using the real
system parameter. Furthermore, in contrast with classical adaptive control where it must be a
priori assumed that for all k, the model θ̂(k) is controllable, and that all the limit points of the
model sequence {θ̂(k)} are controllable, we do not have this limitation. Indeed in our design,
as soon as the control phase starts, controllability of the model and of all the limit points of
the model sequence are guaranteed. In addition, at no time of our design, the time-variations
induced by the adaptation process cannot destroy stability of the closed-loop system. Hence,
bad asymptotic behavior caused by fast adaptation cannot occur.

5.4.5 Bounded input

It is shown in Chapter 4 that for the sake of the identification of a strongly robust uncertainty
set in the identification phase, the input energy level must be increased so that the criterion
for strong robustness described in Chapter 3 is satisfied. By construction of the identification
input (5.11,5.13, 5.14), strong robustness is satisfied in finite time, hence after such time
the identification phase stops, i.e., this identification input does not necessarily have to be
used any longer. This implies that the input sequence stays bounded in the first phase. In
the second phase, the input is designed according to (5.30), which also stays bounded since
the estimate on which the controller is designed is guaranteed to be controllable. Therefore,
boundedness of the input sequence u is guaranteed in both phases of the design.

5.4.6 Control performance

Since control performance is our ultimate goal, we have to be able to measure the perfor-
mance of the closed-loop adaptive system. When the performance of the system is considered
good enough, then adaptation of the parameter might stop. In general, measuring the closed-
loop performance of the system is not a trivial task. However, in the case of pole assignment,
this can be easily done by measuring the actual (time-varying) closed loop poles of the actual
system given in (5.31). When these poles are close enough to the desired ones, one might
freeze the adaptation procedure.

5.5 Strongly robust adaptive pole placement

After having presented the general philosophy of our approach, we feel that the best way to
give some insight in the introduced approach is to explicit the algorithm in a more specified
case, and we choose one of the most popular adaptive control problem: pole assignment.

Problem Statement 5.5.1 (Adaptive pole assignment) The system to be controlled is de-
scribed by

y(k + 1) = (θ0)Tφ(k) + δ(k), ∀k, (5.36)

whereθ0 ∈ Cn ∩ Sn is the unknown parameter vector of the form(5.1), φ is the regressor
vector given by(5.2) andδ(k) is the uncertainty at timek satisfying(5.3).
Given the measurements{u(k), y(k), k = 0, 1, 2, · · · }, generate a sequence of inputs such
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that asymptotically the applied inputs equal the inputs that would have been calculated on
the basis of the true system parameters, i.e.,u(k) → f(θ0)x(k) ask → ∞ wheref(θ0) is
the unique controller such that the closed-loop poles of the system defined by

y(k + 1) = (θ0)Tφ(k) (5.37)

u(k) = f(θ0)x(k)

are located in the desired stable poles{αi}i=1,··· ,2n−1, |αi| < 1. Moreover, no controller
destabilizing the true system should be involved, at any time in the design.

We now give the algorithm of adaptive pole placement based on strong robustness

Algorithm 5.5.2 (Adaptive pole placement based on strong robustness)

Initial conditions and fixed parameters
δ; δ; φ(0); {αi}i=1,··· ,2n−1; Ĝ(0) = R

2n;

Design parameters
{γk}k∈N : γk ↑+∞, γk > 0, limk→∞(γk+1 − γk) = 0;
(u0, u1, · · · , u2n−1) ∈ R

2n : gcd(
∑2n−1

i=0 uiξ
i, ξ2n − 1) = 1.

1. Identification phase, ∀k ≥ 0

• apply to the real system(5.36) the identification input designed in Chapter 4 given by

u(k) = γkut(k), with t(k) = k mod 2n, ∀k. (5.38)

whereu0, · · · , u2n−1 are arbitrarily chosen but satisfy the condition:

gcd(
2n−1∑
i=0

uiξ, ξ
2n − 1) = 1, (5.39)

and the gain sequence{γk} in (5.11) is such that

γk < γk+1,∀k, and lim
k→∞

γk = +∞, (5.40)

and
lim

k→∞
(γk+1 − γk) = 0. (5.41)

• measure(y(k + 1), φ(k)) from (5.36) and update the membership setĜ(k) into

Ĝ(k + 1) = Ĝ(k) ∩ {θ : δ ≤ y(k + 1)− θTφ(k) ≤ δ}; (5.42)

2. Check controllability

• apply Theorem 3.3.5. If(2.39) is not satisfied, re-iterate1., otherwiseTcont = k + 1
and go to2..

3. Check strong robustness: ∀k ≥ Tcont



104 5.5. STRONGLY ROBUST ADAPTIVE POLE PLACEMENT

• apply Theorem 5.3.8. If(5.27) is not satisfied, then re-iterate1. and 3.. If (5.27) is
satisfied,Tswitch = k and go to4..

4. Control phase, ∀k ≥ Tswitch
• compute the model:

θ̂(Tswitch) is arbitrarily chosen inĜ(Tswitch);
θ̂(k + 1) = arg min

θ∈Ĝ(k+1)
{(θ − θ̂(k))T (θ − θ̂(k))}, ∀k ≥ Tswitch. (5.43)

• apply the control input
u(k) = f(θ̂(k))x(k) (5.44)

on the real plant(5.36) wherex is given in(5.6) and

f(θ̂(k)) = F (A(θ̂(k)), B(θ̂(k))) (5.45)

whereF is computed according Ackermann’s formula:

F (A,B) = −[0 · · · 0 1][B AB · · · A2n−2B]Π(A), (5.46)

whereΠ(ξ) =
∑2n−1

i=1 (ξ − αi) is the desired closed-loop polynomial, andA(θ̂(k)),
B(θ̂(k)) are given in(2.9), (2.10) replacingθ by θ̂(k).

• measure(y(k + 1), φ(k)) and compute the model setĜ(k) according to(5.42).

• k → k + 1 and re-iterate4. until the closed performance of the system formed by
(5.36), (5.44) is satisfactory.

5.5.1 Asymptotics

The asymptotic analysis elements given in Subsection 5.4.4 apply here. The main (and de-
sired) feature of the controlled behavior is that asymptotically, the applied control input equals
the desired control input we would obtain on the basis of the real system parameters.

lim
k→∞

||u(k)− f(θ
0)x(k)

||x(k)|| || = 0, (5.47)

where u is computed according to (5.44), (5.45) [72].
Moreover, as soon as the control phase 4. starts, controllability of the model (5.43) at any
time and of all the limit points of the generated model sequence are guaranteed. In addition,
time-variations induced by adaptation do not endanger stability of the closed-loop system
(5.36, 5.44). Hence, bad asymptotic behavior caused by fast adaptation cannot occur.

5.5.2 Transient analysis

Our aim is now to show that the adaptive system described in Algorithm 5.5.2 has a better
transient behavior than the classical certainty equivalence-based pole placement ([72], Chap-
ter 4) when both methods are performed on the same initial system (5.1). For clarity of
presentation, we first treat the first order case, i.e., n = 1. Let us first briefly describe the
classical approach we are going to study.
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Classical adaptive pole placement in the first order case

The system to be controlled is supposed to be given by

y(k + 1) + a0y(k) = b0u(k),∀k (5.48)

where θ0 = (a0, b0) is the unknown parameter vector in S1 ∩ C1, i.e., such that |a0| < 1
and b0 �= 0. Hence, the description (5.48) is a special case of the general case described by
(5.36), assuming the uncertainty δ to be zero.

The adaptive control objective is to design an input sequence u(k) that asymptotically con-
verges to the input sequence u0(k) we would obtain on the basis of the true parameter values:

u0(k) =
α+ a0

b0
y(k), (5.49)

where α,|α| < 1 is the given desired closed-loop pole.

The classical adaptive scheme proposed in [72] is the following.

Algorithm 5.5.3 (Classical adaptive pole assignment in the first order case)

Initial conditions θ̂(0) = (â(0), b̂(0)) ∈ R
2, y(0).

Recursion ∀k ≥ 0

• apply the control input given by

u(k) =
α+ â(k)

b̂(k)
y(k) (5.50)

whereb̂(k) �= 0 is assumed to be satisfied thoughout the recursion.

• measurey(k + 1) and compute

θ̂(k + 1) = θ̂(k) +
φ(k)
||φ(k)||2 (y(k + 1)− [θ̂(k)]Tφ(k)), (5.51)

takingφ(k) = (−y(k), u(k))
• k → k+1 until the closed-loop performance of the system consisting of(5.48), (5.50)

is satisfactory.

Transient behaviors: a comparison

Clearly, the first problem when performing the adaptive scheme in Algorithm 5.5.3 is that
controllability of the estimate is not always guaranteed, as nothing prevents b̂(k) to be zero
in some times. Hence, without appropriate precautions, the adaptive scheme may be com-
pletely paralysed. Various modifications of Algorithm 5.5.3 have been proposed in order to
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solve this problem. For instance, we refer to [91] where the following approach is adopted: at
each iteration one compare the absolute value of the coefficient b̂(k) to a fixed positive value
εk, where the sequence {εk}k∈N is a priori given and strictly positive and decreases with time.
If b̂(k) ≤ εk, then one proceeds as in Algorithm 5.5.3. If b̂(k) < εk, then a modified input is
applied so as to drive b̂(k + 1) away from the critical value 0.

Now, even in the case where the condition b̂(k) �= 0 is always guaranteed, Algorithm 5.5.3
might lead to arbitrarily bad undesired transients. In this respect we have the following result.

Proposition 5.5.4 (Arbitrarily destabilizing controller) For any system(a0, b0) ∈ S1∩C1
described by(5.48), for any initial conditiony(0), for any desired pole locationα, |α| < 1,
and for any integersN ≥ 0, n ≥ 0, there exists an initial estimate(â(0), b̂(0)) of the parame-
ter vector such that Algorithm 5.5.3 performed for the set of values{(a0, b0), α, (â(0), b̂(0))}
involvesn consecutive controllers which stabilize the true plant(5.48), followed by at least
N consecutive destabilizing controllers.

Proof: the proof of Proposition 5.5.4 is based on geometrical considerations. We first spend
some words on the geometrical properties of the set of systems leading to a controller stabi-
lizing the true system, what we design by set of stabilizing systems.

(1) Set of stabilizing systems in the parameters space: we define the set Sa0,b0 of stabi-
lizing systems as the set of systems (a, b), b �= 0 such that the control law based on (a, b)
according to

u(k) =
α+ a
b
y(k) (5.52)

stabilizes the system described by (5.48). Hence

Sa0,b0 = {(a, b) : |
b0

b
(a+ α)− a0| < 1}. (5.53)

Equation 5.53 can be geometrically interpreted as follows (see Figure 5.2): define C+ to be
the cone with vertex (−α, 0) and boundaries the two lines going to (−α, 0), (0, b0α

1+a0 ) and

(−α, 0), (0,− b0α
1−a0 ) respectively, such that the elements in C+ all have a second coordinate

b > 0. Similarly, define C− to be the cone with the same vertex, the same boundaries, but
such that the elements in C− all have a second coordinate b < 0. We then have:

Sa0,b0 = C+ ∪ C−. (5.54)

Remark that the line G0 going through (−α, 0) and (a0, b0) represents the set of systems such
that when the associated controller is applied to the real system 2.1, the closed-loop pole is
exactly in α. And the complement of Sa0,b0 in R

2 is the set of systems leading to controller
which destabilizes the real unknown plant (a0, b0). We now recall the following geometrical
properties which follow from the orthogonal projection algorithm used in Algorithm 5.5.3.

(2) Orthogonal projection algorithm: geometrically speaking, (5.51) means that the new
estimate θ̂(k + 1) is computed as the orthogonal projection of the previous estimate θ̂(k) on
the line given by:

G(k + 1) = {(a, b) ∈ R
2 : ay(k)− bu(k) + y(k + 1) = 0}. (5.55)
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a

X1

X2

(−α, 0)

C+

C−

G0

(a0, b0)
Sa0,b0 = C+ ∪ C−

X1 = (0, | b0α
1−a0 |)

X2 = (0, | b0α
1−a0 |)

Figure 5.2: Stabilizing controllers.

G(k + 1) has normal vector φ(k) = (−y(k), u(k)) in the parameter space. Now, since
u(k) = â(k)+α

b̂(k)
y(k)) (where b̂(k) is supposed to be always non zero), G(k + 1) has normal

vector (−y(k), â(k)+α

b̂(k)
y(k). Hence if y(k) �= 0 and b̂(k) �= 0, the vector (−b̂(k), â(k) + α)

is normal to G(k + 1) at any time k. This implies that the vector (â(k) + α, b̂(k)) is parallel
to G(k + 1). Let us define G0 as the line going through (−α, 0) and θ̂0. It follows from this
discussion that θ̂(k + 1) is the orthogonal projection of θ̂(k + 1) on G(k) parallely to G0.
This result is illustrated in Figure 5.3. Now, the use of the orthogonal projection update rule

a

b

(−α, 0)

(â(k), b̂(k))

(â(k + 1), b̂(k + 1))

(a0, b0)

G0

G(k)

G(k + 1)

Figure 5.3: Orthogonal projection algorithm.

(5.51) guarantees the following properties.

Property 5.5.5 (Orthogonal projection algorithm )

θ0 ∈ G(k),∀k. (5.56)
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lim
k→∞

(â(k), b̂(k)) ∈ G0. (5.57)

(5.56) implies in particular that ∀k, θ̂(k + 1) is the orthogonal projection of θ̂(k) on the line
going through θ0 and parallel to the line going through (−α, 0) and (â(k), b̂(k)). This leads
to the following result:

||(â(k + 1), b̂(k + 1))− (â(k), b̂(k))|| ≤ ||(−α, 0)− (a0, b0)||,∀k (5.58)

This equation means that at any time k, the parameter vector update ”step” defined by
||(â(k+1), b̂(k+1))− (â(k), b̂(k))|| is bounded by the fixedquantity ||(−α, 0)− (a0, b0)||.

Remark 5.5.6 By construction of (â(k), b̂(k)) (Figure 5.3) we have that the entire sequence
of estimates {(â(k), b̂(k))}k∈N is located in the half-space with boundary G0 containing the
true parameter vector (â0, b̂0). This is shown in Figure 5.4.

a

b

(−α, 0)

(a0, b0)

G0

(â(0), b̂(0))

(â(1), b̂(1))

(â(2), b̂(2))

(â(3), b̂(3))

{(â(k), b̂(k))}k→∞

Figure 5.4: Sequence of orthogonal projections.

We now have all the ingredients we need to prove the main result in Proposition 5.5.4. The
various steps of this proof are illustrated in Figure 5.5. We fix an integer N , arbitrarily
chosen. Suppose that the initial estimate (â(0), b̂(0)) is on a boundary of the cone Sa0,b0 of
systems yielding a controller stabilizing the actual system. Using Remark 5.5.6, we know
that (â(k), b̂(k)) ∈ ]G0, (â(0), b̂(0))),∀k ∈ N, where ]G0, (â(0), b̂(0)) denotes the open
half-plane with boundary G0 containing (â(0), b̂(0)). Now, since G0 ∈ Sa0,b0 (Figure 5.2)
and using (5.57), there exists an integer na0,b0 > 0 such that

(â(k), b̂(k)) ∈ ]G0, (â0, b̂0))\Sa0,b0 ∀k ≤ na0,b0 ; (5.59)

(â(k), b̂(k)) ∈ Sa0,b0 ∀k > na0,b0 . (5.60)
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In other words:

(â(k), b̂(k)) leads to a controller destabilizing (a0, b0) ∀k ≤ na0,b0 ; (5.61)

(â(k), b̂(k)) leads to a controller stabilizing (a0, b0) ∀k > na0,b0 . (5.62)

Now, by construction (Figure 5.4), we have that

na0,b0∑
k=0

||(â(k + 1), b̂(k + 1))− (â(k), b̂(k))|| > ||(a0, b0)− (â(0), b̂(0))|| (5.63)

and

lim
||(â(0),b̂(0))−(−α,0)||→∞

[
na0,b0∑
k=0

||(â(k + 1), b̂(k + 1))− (â(k), b̂(k))||] =∞. (5.64)

We now recall Equation 5.58:

||(â(k + 1), b̂(k + 1))− (â(k), b̂(k))|| ≤ ||(−α, 0)− (a0, b0)||,∀k (5.65)

Therefore,

na0,b0∑
k=0

||(â(k + 1), b̂(k + 1))− (â(k), b̂(k))|| ≤ na0,b0 ||(−α, 0)− (a0, b0)|| (5.66)

Hence, using equations 5.64 and 5.66, we obtain

lim
||(â(0),b̂(0))−(−α,0)||→∞

[na0,b0 ||(−α, 0)− (a0, b0)||] =∞. (5.67)

Since ||(−α, 0)− (a0, b0)|| is a fixed and finite quantity, equation 5.67 is equivalent to

lim
||(â(0),b̂(0))−(−α,0)||→∞

na0,b0 =∞. (5.68)

These results mean that for any integer N arbitrarily chosen, there exists an initial esti-
mate (â(0), b̂(0)) taken on the boundary of Sa0,b0 and far enough from (−α, 0) so that the
algorithm leads to at least N destabilizing controllers. To go further, construct the point
(â′(0), b̂′(0)) in such a way that the orthogonal projection of (â′(0), b̂′(0)) on the line going
through (a0, b0) and (â(0), b̂(0)) is (â(0), b̂(0)) (see Figure 5.5). Note that (â′(0), b̂′(0)) be-
longs to Sa0,b0 , i.e., the controller based on (â′(0), b̂′(0)) stabilizes the real system (a0, b0).
The classical pole placement algorithm initialized with (â′(0), b̂′(0)) would hence involve
one stabilizing controller (the controller based on (â′(0), b̂′(0)) ) followed by at least N
consecutive destabilizing controllers. Similarly, for any n > 0, we can construct an initial
estimate such that Algorithm 5.5.3 initialized with this estimate leads to n consecutive stabi-
lizing controllers followed by at least N consecutive destabilizing controllers. This ends the
proof of Proposition 5.5.4.
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Figure 5.5: Construction of a poor initial estimate.

Remark 5.5.7 Under the constraint that during adaptation the sequence of estimates
{(â(k), b̂(k))} is kept within the region corresponding to asymptotically stable systems
S1 = {(a, b) ∈ R

2 : |a| < 1}, Proposition 5.5.4 still holds.

It follows from Proposition 5.5.4 that with insufficient prior knowledge on the system to
be controlled, classical pole placement might generate arbitrarily poor models, and subse-
quently arbitrarily poor controllers, leading to bad transients in the input-output response of
the closed-loop system. More precisely, Proposition 5.5.4 implies that it is not possible to
predict if the classical control system based on Algorithm 5.5.3 will behave badly or not by
looking at any arbitrarily large number of initial iterations, since destabilizing controller can
be generated at any time of the design. In addition, even in the case where at each frozen time
instant the closed-loop system would be obtained, stability of the time-varying system is not
necessarily maintained if adaptation is too fast.
In contrast, at no time in our strategy a destabilizing controller is applied to the system to be
controlled, even in the case where the initial knowledge on the system is very small, hence
no bad transient behavior due to destabilizing controllers can occur and therefore the tran-
sient behavior of adaptive systems based on Algorithm 5.5.2 is superior to classical certainty
equivalence based schemes. Moreover, once the control phase is started, strong robustness
of the model set guarantees that the stability of the closed-loop system is preserved, despite
the possibly fast time-variations of the controller. Of course, identification inputs generated
in Algorithm 5.5.2 may still have a temporarily destabilizing effect, but this seems to be the
inevitable price to be paid due to identification of the initial unknown system.
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5.5.3 Simulation example

We now illustrate the ideas discussed in the previous sections by a simulation example. We
consider the system defined by (2.1) with

a0 = 0.9; b0 = 5; − δ = δ = 0.1. (5.69)

The measurement error δ(k) is a uniformly distributed random signal with bound δ̄ and with
an off-set of value δ̄/2. The control objective is pole placement in α = −0.3. The algorithm
is initialized with:

â(0) = −0.3; b̂(0) = 0.8; y(0) = 2.
We compare the performance of the system (5.69) and subject to the three following control
pole placement strategies:

• adaptive pole placement based on strong robustness according to Algorithm 5.5.2 us-
ing the identification input defined by:

u(k) = γku0 if k is even, (5.70)

u(k) = γku1 if k is odd

where the values u0 and u1 are:

u0 = 0; u1 = 0.6, (5.71)

and
γk =

√
k + 1,∀k. (5.72)

• classical pole placement given in Algorithm 5.5.3.

• the ”true” control input based on the unknown parameters a0, b0 given by:

u(k) =
α+ a0

b0
y(k), ∀k. (5.73)

The simulation results are depicted in Figure 5.6 and Figure 5.7. In Figure 5.6 the plot of
the three control inputs is given, while Figure 5.7 depicts the output responses of the three
corresponding control systems. We obtained that after three iterations the uncertainty set
identified with the input described in (5.70), (5.71) and (5.72) is strongly robust with respect
to pole placement in α. Figure 5.6 and Figure 5.7 show that the performance of the adaptive
control system based on strong robustness is better than the performance of the classical
adaptive control system, since the transients are improved. Not surprisingly, these transients
don’t completely vanish. By lack of initial knowledge on the real system, the learning phase
indeed requires for a few iterations some input-output signals large enough to achieve strong
robustness. Figure 5.8 shows the difference between the optimal control gain in (5.73) and
the model-based-control gain sequence of the form

∆(k) =
α0 + a0

b0
− α0 + â(k)

b̂(k)
(5.74)

where the model sequence is obtained from classical adaptive control and adaptive control
based on strong robustness respectively. It shows that in this example the control input gain
sequence obtained from adaptive control based on strong robustness converges faster to the
true gain sequence than the control input sequence obtained with classical adaptive control
is. Therefore the control performance is improved by the introduction of strong robustness.
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Figure 5.8: Difference between designed feedback gain and true feedback gain.

5.6 Further research

In this section, we briefly discuss how the adaptive control scheme presented in Section 5.3
may be modified. The first potential modification involves time-invariant strong robustness,
whereas the second modification includes weak strong robustness.

5.6.1 Time-invariant strong robustness and dwelling time

In the previous sections of this chapter, identification of a strongly robust uncertainty set is
the key issue, since actual control can start only after strong robustness has been reached.
The main drawback to this is that the test which allows us to test whether the uncertainty
set is strongly robust or not given in Theorem 5.3.8 has a complexity which grows very fast
with the considered system order. Hence we find appealing the idea of trying to decrease the
computational complexity, at least in a first time period. To this respect, we first recall that in
order to be strongly robust, a given set of systems must necessarily be time-invariant strongly
robust (see Definition 3.1.10): the controller based on any model in this set has to stabilize
any other system in the set. Time-invariant strong robustness is already a stringent condi-
tion on the model set, however to test whether a set is time-invariant strongly robust may be
computationally more tractable than to test whether it is strongly robust (Subsection 3.3.4,
Chapter 3). This suggests therefore to split the identification phase described in Section 5.3.1
into two phases: at first we would collect information on the system to be controlled until
the uncertainty set is time-invariant strongly robust. This condition on the uncertainty set is
already stringent but is satisfied in finite and reasonable time when using the input sequence
(5.11)-(5.14). To this respect, it has been proven in a slightly different context that stabilizing
the identified class of models automatically leads to stabilization of the true unknown system
[32], [97].
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Once it has been checked that time-invariant strong robustness is achieved, one may proceed
according one of the two following points of view. First time-variations of the controller
should also be taken into account so that strong robustness is achieved: it should be checked
that the time-varying controller based on any sequence of systems in the uncertainty set sta-
bilizes any fixed system in the set. This could be done by checking if the uncertainty set
satisfies the condition (5.27) at any time. This method, where checking time-invariant strong
robustness is then refined into a test checking strong robustness, is a way to adapt the effort
put in the identification procedure to the desired level of information: time-invariant strong
robustness is less constraining than strong robustness and is easier to handle from a compu-
tational point of view.
Alternatively, one may already start control using adaptation of a model and certainty equiv-
alence, while checking at any time that the stability of the time-varying closed loop system is
not disrupted. More precisely, at each time we would estimate a model according to (5.29),
compute the controller on the basis of this estimate according to (5.30), but at the same time
force the time-variations of the controller to be mild enough so that asymptotic stability of
the overall scheme is preserved. Such an idea suggests to introduce a so-called dwelling time
[32] between consecutive instants at which the model is updated, in such a way that it would
be adaptively selected on the basis of collected data measurements. At the same time, one
could keep checking whether the uncertainty set becomes strongly robust or not; if strong
robustness is achieved, then the dwelling time could be put to zero since asymptotic stabil-
ity would be secured, irrespectively of the time-variations of the controller. However, how
to compute adaptively such a dwelling time in our framework is not clear yet and requires
further investigation.

5.6.2 Adaptive control and weak strong robustness

In Chapter 3, we introduced the notion of weak strong robustness as follows: a set Ω ⊂ Cn
is weakly strongly robust if there exists a control objective satisfying Assumption 5.2.2 in a
class of candidate control objectives such that Ω is strongly robust with respect to this control
objective. Now, suppose that we deal with adaptive pole assignment, i.e., suppose that the
adaptive control objective is to obtain closed-loop poles αi(k), i = 1, · · · , 2n − 1 that are
asymptotically equal to desired fixed stable poles αi, i = 1, · · · , 2n − 1. In this situation,
one may compute at each time the set of pole locations {αk

1 , · · · , αk
2n−1} ⊂ (] − 1, 1[)2n−1

with respect to which the set Ĝ(k) would be strongly robust: if this set is not empty, i.e., if
Ĝ(k) is weakly strongly robust, then by comparing the position of desired pole locations to
the location of this set might shed some light on how the model set Ĝ(k) should be updated
so that at the next iteration, the desired poles are located in the set of poles for which Ĝ(k+1)
is strongly robust. Such method would indeed provide a way to minimize the time needed
to the identification of a strongly robust uncertainty set in the algorithm presented in Section
Section 5.3.
Although the practical application of this idea is not clear in the general case, it yields inter-
esting results in the case of first order systems. Given a bounded set of systems Ĝ(k) ⊂ P1, it
is easy to compute the set of pole locations denoted by [αm, αM ] for which Ĝ(k) is strongly
robust. Geometrically, the smallest pole value αm for which Ĝ(k) is strongly robust, if it ex-
ists, is given by the intersection of the parallel line to the tangent to Ĝ(k) going through (1, 0)
with the a−axis. Similarly, the largest pole value αM for which Ĝ(k) is strongly robust, if
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Figure 5.9: Weak strong robustness and update of the model set.

it exists, is given by the intersection of the parallel line to the tangent to Ĝ(k) going through
(−1, 0) with the a−axis.
If −1 < αm < αM < 1 as depicted in Figure 5.9, then Ĝ(k) is strongly robust with respect
to pole placement in any pole within [αm, αM ]. Now, suppose that the desired pole is α,
|α| < 1.
1. If α ∈ [αm, αM ], then Ĝ(k) is strongly robust with respect to the desired pole placement,
hence the control phase can be started.
2. If αM < α < 1, then Ĝ(k) is not strongly robust with respect to the desired pole place-
ment. A way to see non-strong robustness is that the intersection of the cones c1 and c2 is
non-empty (see Chapter 3). Moreover, we see from the above geometrical consideration that
Ĝ(k) can never become strongly robust if the systems corresponding to R, S in Figure 5.9
belongs to Ĝ(k). Hence, the identification could be forced so as to cut the points R, S off the
uncertainty set.
3. If −1 < α < αm, then Ĝ(k) is not strongly robust with respect to the desired pole place-
ment. Moreover, we see from the previous geometrical considerations that Ĝ(k) can never
become strongly robust if the systems corresponding to T , Q in Figure 5.9 belongs to Ĝ(k).
Hence, the identification could be forced so as to cut the points T , Q off the uncertainty set.
Thus the position of the desired closed-loop poles with respect to the set of stable poles for
which the uncertainty set would be strongly robust would inform us about in which direction
the uncertainty set should be shrunk so as to become strongly robust as fast as possible.

5.7 Conclusions

In this chapter, the results of Chapter 3 and Chapter 4 have been exploited to revisit classical
adaptive control of linear time-invariant SISO systems in discrete-time with an unknown-but-
bounded uncertainty. Yet the tests proposed to check the controllability and strong robustness
conditions in our approach are only sufficient, hence results are conservative. However we
ensure that the multi-phase adaptive scheme based on strong robustness will in finite time
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perform the control of the unknown plant to be controlled. The analysis shows that bad tran-
sient cannot occur, in opposition to classical schemes where destabilizing controllers are a
priori not avoided. Of course, the approach proposed in this chapter is a general description
and still open questions remain. For instance, note that we expect the test for strong robust-
ness to be the more expensive task in terms of computation. Also, it might be interesting to
compute a test for strong robustness that would be recursive. Such a test would spare us with
rechecking the test for strong robustness over the whole set of model candidates at each new
measurement, and the computational cost of the approach would be much lower.



Chapter 6

Conclusions and further research

In this survey chapter, we first summarize the preceding chapters so as to point out their main
contribution. Efficiency and necessity of the strongly robust adaptive control methodology
are discussed, as well as the limitations that may be encountered when resorting to this
approach. Some of these limitations are related to the numerical tools used to tackle the
problems involved in the presented algorithm and could possibly vanish if other mathematical
or conceptual tools were used. On the other hand, some of the limitations are inherent to the
strong robustness approach, and cannot be reduced unless by considering other adaptive
control techniques. These two issues lead to our recommendations for further research.

6.1 Conclusions

In Chapter 1, the general context of the thesis, that of adaptive control, has been presented.
Classically, adaptive control approaches are derived from the certainty equivalence principle,
as it is briefly outlined next. First, identification methods deliver an approximation of the
plant (the model) and a level of accuracy of this model (the uncertainty). Second, based on
the model, a controller is designed to be applied to the real plant to be controlled. Clearly,
the performance achieved by this model-based controller highly depends on the quality of the
model but also on the assumed uncertainty. This is the reason why when control performance
is not considered as good enough, new measurement data are used to identify a new model,
allowing the update of the model-based controller. This idea of adapting the model until per-
formance is satisfactory is the key idea governing adaptive control. It has been shown in the
literature (see Chapter 1) that most of certainty equivalence-based adaptive control strategies
yield control design in the sense that the controlled system will perform well asymptotically.
This is because the model is updated in such a way that it becomes asymptotically good for
control. However, in the initial phase, when model uncertainty is large, there is no guarantee
that the model-based controller performs well when applied to the real system. An undesired
but no predictable case is when the model-based controller does not stabilize the true sys-
tem. Or, in an even more critical situation, the model could be uncontrollable. In addition,
due to adaptation, time variations of the controller may destroy asymptotic stability of the
control system. These three phenomena might lead to undesired transients or loss of stabil-
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ity, and are therefore highly undesired. Hence the question: How can one arrive at a high
performance closed-loop controlled plant on the basis of plant models that are validated by
measurement data, whilst insuring stability of this controlled plant at any time?Our solution
to this challenging question is the main object of this thesis. To tackle this problem, we re-
formulate it as follows: ”What property should the set of all model candidates satisfy so that
the three drawbacks stated above vanish when using classical certainty equivalence adaptive
control methods?” The answer to this question is that the model set has to be strongly ro-
bust. If strong robustness is achieved, then the time-varying model-based controller exists
and stabilizes the plant to be controlled, at any time of the design.

In Chapter 2, the mathematical set-up has been described. The system to be studied is a
linear, time-invariant and controllable SISO system with known order described in discrete-
time. Moreover, the modeling error is bounded-but-unknown, with known lower and upper
bounds. The control objective is left unspecified; however the map assigning to each model
in the model class its controller is continuous and it is assumed that the closed-loop sys-
tem obtained when connecting any model and its corresponding controller is asymptotically
stable.

In Chapter 3, the notion of strong robustness has been treated as a mathematical prop-
erty of a set of systems. First, the definition of strongly robust sets of systems in the class
of systems presented in Chapter 2 has been given. Then, various notions related to strong
robustness have been defined: time-invariant strong robustness, weak strong robustness and
strong quadratic robustness. An important result in this chapter has been the proof that around
any system in the class of systems defined in Chapter 2, there exists an open strongly robust
neighborhood. The introduced strong robustness notions have been illustrated by means of
first order case examples. Furthermore, relationship between these presented notions and
classical robustness has been established. In particular, strong robustness measures have
been expressed by means of real and complex structured stability radii. This allowed us to
derive sufficiency criteria for the strong robustness notions listed above involving structured
stability radii. However, to verify numerically whether a given set of systems satisfies such
tests is not trivial. In order to deliver a computationally tractable test for strong robustness,
attention has been then paid to polyhedral sets of systems in canonical form in the class of
systems specified in Chapter 2, in the case of pole placement design. Under these assump-
tions, a necessary and sufficient test for strong quadratic robustness has been expressed under
the form of a finite set of Linear Matrix Inequalities. Next, a Kharitonov-like criterion to test
whether a given set of systems is time-invariant strongly robust for pole placement design has
been established.

In Chapter 4, an input design to identify a strongly robust set of models has been pre-
sented. This input sequence is chosen to be 2n-periodic, where n is the order of the system
to be controlled. To begin with, the case where the output sequence is also 2n-periodic is
considered and conditions on the 2n design parameters are established to ensure bounded-
ness and decreasing size of the uncertainty set. Then, these results have been extended to the
non-periodic case, and the design of an input sequence yielding a strongly robust uncertainty
set in finite time has been explicitly given. Finally, the effectiveness of this designed input
sequence in terms of decrease of the size of the uncertainty set with time has been shown on
a first order example.

In Chapter 5, identification of a strongly robust uncertainty set and adaptive control
have been brought together, leading to strongly robust adaptive control. After having de-
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scribed this new adaptive control approach, its analysis has been provided. It has been shown
that undesired transients cannot occur when resorting to strongly robust adaptive control,
contrary to classical approaches where arbitrarily large transients may appear. Although our
method does not require the knowledge of the exact parameters of the system to be controlled,
controllability of the model and stabilizability of the model-based controller are guaranteed
and stability of the control scheme is preserved irrespective of the speed of adaptation. The
overall scheme is illustrated by means of a first order example.

6.2 Recommendations for further research

Many questions related to the strong robustness approach depicted in this thesis remain open.
Limitations of the proposed approach are now examined and potential relaxation of these
constraints after further investigation is now discussed.

6.2.1 Can we relax the standing assumptions?

The results presented in this thesis have been established under the assumptions presented in
Chapter 2. Below, we investigate whether potential modifications of this new approach may
allow us to relax these assumptions.

• We assumed all along this work that the system to be controlled is open-loop asymp-
totically stable. This assumption is required for open-loop identification as discussed
in Chapter 3. However, if identification of a strongly robust uncertainty set could be
achieved by closed-loop identification, this assumption could be relaxed. On the other
hand, due to the complex interaction between identification and control in closed-
loop systems, identifiability problems may occur and it is not established yet how
closed-loop identification of a strongly robust model set could be performed. Further
investigation in this line of thought may be fruitful.

• Throughout this thesis, the order of the system to be controlled is assumed to be
known. In particular, the identification input design proposed in Chapter 4 tightly
depends on this assumption since it deals with 2n-periodic input sequences, where n
is the assumed system order. Now, one may desire to weaken the assumption that the
exact system order is known. For instance we may assume that only an upper bound
on this order is available, say, n ≥ n. Note that the definition of strongly robust sets
of systems given in Chapter 3 still applies to sets of systems that have different orders.
Now, to deal with adaptive control of a system with unknown order, how to modify
our strongly robust adaptive control method in Chapter 5? One answer to this question
may be to resort to a set of strongly robust adaptive control algorithms run in parallel,
each of these algorithms being deviced for a certain order value. It is not established
yet how such an idea could be developed but this would certainly be a nice solution,
at least in the case where a known upperbound of the true system order is known and
not too large.

• In this thesis, the systems are described in discrete-time. However, all the presented
results can easily be mimicked to the continuous-time description. Characterization of
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strongly robust sets of systems in continuous time description could then be expressed
by means of Riccati equations, following the approach in Chapter 3 involving LMI’s.

• It should be emphasized that the definition of strongly robust sets (and other related
strong robustness notions) can be extended to a much broader class of systems than
the class of systems defined in Chapter 2. In particular, time-varying systems could
be considered, leading to strongly robust sets of time-varying systems. In the same
line of thought, the case of nonlinear Multi-Input Multi-Output (MIMO) systems may
be investigated. However, it is far from clear how to compute the region of all model
candidates on the basis of data measurements when the system to be controlled is
MIMO and presents time-variations or nonlinearities in its dynamics. Moreover, ex-
istence of strongly robust sets of systems within this much broader class of systems
is not guaranteed and probably would require further assumptions on the considered
systems.

6.2.2 Test for strong robustness: conservatism issue

As discussed in Chapter 3, only sufficiency tests to secure strong robustness have been estab-
lished up to this date, and these tests may hence be conservative. A first, very natural, question
to ask is: how conservative are these tests? This problem has not been examined in this thesis
but would probably shed some light on when the proposed approach is inappropriate or, on
the contrary, very much advised.
Moreover, as a result of the strong robustness test conservatism, it may happen that the iden-
tified uncertainty set is strongly robust while the sufficient test for strong robustness is not
satisfied. In such a case, more identification steps would be required before control can be
started, although control could be theoretically started earlier. To alleviate this problem, fur-
ther work should hence deliver a sufficient and necessary test to check whether a given set of
systems is strongly robust or not.

6.2.3 Do we have to wait for strong robustness to start control?

In the strong robustness adaptive control approach, validation of the test checking strong
robustness of the identified uncertainty set is the criterion which decides when control can
actually start. However, this test has a complexity which grows very fast with the system
order. Moreover, due to the conservatism of this test, the time at which control actually
starts might be very large, although strong robustness may have been achieved at an earlier
time. In addition, strong robustness may be achieved only when the uncertainty set is very
small, requiring a large number of measurements. Hence the question: ”Is there a time
at which control can be started under appropriate precautions, although the test for strong
robustness is not yet validated, instead of waiting until this test is validated?” In order to
be strongly robust, a given set of systems must be time-invariant strongly robust. Time-
invariant strong robustness is already a stringent condition on the model set, however to test
whether a set is time-invariant strongly robust may be computationally more tractable than
to test whether it is strongly robust. This suggests therefore to split the identification phase
described in Section 5.3.1 into two phases: first, we would collect information on the system
to be controlled until the uncertainty set is time-invariant strongly robust. Once it has been
checked that time-invariant strong robustness is achieved, one may already start control using
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adaptation of a model and certainty equivalence, while checking at any time that the stability
of the time-varying closed loop system is not disrupted by adaptation. Such an idea suggests
to introduce a so-called dwelling timebetween consecutive instants at which the model is
updated, to be adaptively selected on the basis of collected data measurements (see Section
5.6.1 and Chapter 5 for references to recent contributions involving this idea). This dwelling
time should be kept small enough to guarantee that the adaptation process would not destroy
stability of the closed-loop system. At the same time, one could keep checking whether the
uncertainty set becomes strongly robust or not; if strong robustness is achieved, then the
dwelling time could be put to zero since asymptotic stability would be secured, irrespectively
of the time-variations of the controller. However, how to compute adaptively such a dwelling
time in our framework is not clear yet and requires further investigation.

6.2.4 How data can serve identification for strong robustness?

In Chapter 5, it appeared that the way the uncertainty set should be reduced geometrically
may give a hint as to how to choose the identification sequence so that strong robustness is
achieved as fast as possible. Also, the location of the desired closed-loop poles with respect to
the set of closed-loop poles that are admissible for strong robustness may inform the designer
on how much and how fast the uncertainty set should be shrunk so as to achieve strong
robustness. These ideas, clearly established in the case of first order pole placement (Section
5.6.2), are still far from trivial for larger order systems. In particular, one interesting question
is: What kind of geometry have strongly robust sets of systems? Unfortunately, this simple
question cannot be answered at a complete level of generality. For instance, if the true plant
to be controlled is squeezed towards the set of non-controllability systems, one expects the
largest strongly robust set of systems containing this plant to shrink. Further investigation
may relate the size of the largest strongly robust neighborhoods around a system to the level
of controllability of this system.

6.2.5 When to use strongly robust adaptive control?

The main drawback of our approach is that it involves computationally expensive steps, such
as the computation of the membership set, the test to check whether this set is in the set of con-
trollable systems and the test to check whether strong robustness is achieved or not. Hence,
there may be some situations where one should certainly think twice before using strongly
robust adaptive controllers. As such, in the cases where poor-quality transients are not a very
serious problem for applications, one may instead resort to classical robust adaptive control
methods leading to much simpler controllers. However, it is important to note that when
prior knowledge is not sufficient to guarantee good transients, and when bad transients are
absolutely undesired, classical adaptive control methods may fail. If strongly robust adaptive
control is adopted, more effort has to be put in the identification part and the time at which
control of the system will actually start may be large, but no risk of bad transients will ever
occur. On the other hand, if classical adaptive control is preferred then control starts earlier,
but without any guarantee to keep transients acceptable nor guaranteeing that closed-loop
stability will be secured during the adaptation process.
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Verlag, 1991.

[56] H. Kaufman, I. Barkana and K. Sobel, Direct Adaptive Control Algorithms, Theory and
Applications, Second Edition, Springer-Verlag New York, 1998.

[57] V. L. Kharitonov, The Routh-Hurwitz problem of a family of polynomials and
quasipolynomials, Izvetiy Akademii Nauk Kazakhskoi SSR, Seria fizikomatematich-
eskaia, 26:69-79, 1979.

[58] H. Konig and D. Pallashke, On Khachian’s algorithm and minimal ellipsoids, Numer.
Math., 36: 211-223, 1931.

[59] R. L. Kosut, Model Identification and Adaptive Control: From Windsurfing to Telecom-
munications, G. Goodwin (ed.), Springer-Verlag, 2001.

[60] F. Kraus, M. Mansour and E. I. Jury, Robust Schur-stability of interval polynomials,
IEEE Transactions on Automatic Control, 37(1):141-143, 1992.

[61] G. Kreisselmeier, A robust indirect adaptive control approach, Int. Journal Cont.,
43:161-175, 1986.

[62] G. Kreisselmeier and M. C. Smith, Stable adaptive regulation of arbitrary n-th order
plants, IEEE Transaction on Automatic Control, 31:299-305, 1989.

[63] P. R. Kumar, Convergence of adaptive control schemes using least-squares estimates,
Proc. of the 28th IEEE Conference on Decision and Control, Tampa, USA, 727-731,
1989.

[64] P. de Larminat, On the stabilizability condition in indirect adaptive control, Automatica,
20:793-795, 1984.



BIBLIOGRAPHY 127

[65] J. Lelong-Ferrand and J. M. Arnaudiès, Cours de math́ematiques, Tome 1, Algèbre, 3rd
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Summary

This thesis addresses a long-standing problem in adaptive control, that of the control sys-
tem stability in the transient phase. Classically, adaptive control methods are based on the
Certainty Equivalence Principle, according to the following ideas. At each iteration of the
design, a model of the true system to be controlled is estimated using an identification pro-
cedure. Based on this model, a controller is designed to be applied to the real plant, as if
there were no modeling error. As long as control performance is not satisfactory, the previ-
ous steps are repeated. However, when using such classical certainty equivalence principle
based strategies, three problems are of concern. Firstly, because of model uncertainty there is
by no means any guarantee that the time-frozen model-based controller will stabilize the true
system. This may cause highly undesired transients in the control system behavior. More
importantly, there is no way to check a priori if the model is controllable. Unfortunately, if
controllability is not attained, no controller can be based on the model, implying a complete
paralysis of the adaptive control scheme. Secondly, even in the case where at any frozen time
the model is controllable and the controller based on this model stabilizes the real plant, if
model time-variations are too fast, then asymptotic stability of the adaptive scheme may be
destroyed.
To start with, the concept of strong robustness, fundamental in our work, is defined. A set
of systems is said to be strongly robust with respect to a given control objective if it meets
the following property: for any sequence of systems in this set, the time-varying controller
based on this sequence of systems stabilizes any other fixed system in the set. In our adaptive
control context, if we assume the model set to be strongly robust, then wherever the model
is updated within this set and irrespective of how fast adaptation goes, the corresponding
time-varying controller exists and stabilizes the true unknown plant. Hence, controllability
of the model and stability of the time-varying closed-loop system are guaranteed over time,
contrary to classical adaptive control approaches.
Following this idea, the main goal in this thesis is to design an adaptive control procedure
exploiting the concept of strong robustness. To achieve this aim, our approach is threefold.
As a first step, strong robustness is studied as a mathematical object (Chapter 3). In particu-
lar, attention is paid to the geometrical properties of strongly robust sets of systems for given
control objectives, mainly pole placement design and linear quadratic control. The systems
under consideration are linear and time-invariant SISO systems in discrete-time description,
with an unknown-but-bounded modeling error with known upper and lower bounds and with
a known order. A fundamental result is the existence of non-trivial strongly robust neighbor-
hoods around any system in the considered class of systems. Then, sufficiency tests for the
characterization of strongly robust sets of systems have been expressed by means of various
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control theory tools such as linear matrix inequalities and a Kharitonov-like test.
The second step in our approach (Chapter 4) is to relate the concept of strong robustness to
identification for adaptive control. In this respect, attention is paid to the following question:
in the perspective of identification for adaptive control, how to obtain a strongly robust set of
models? To solve this identification issue, we design and implement an open-loop identifica-
tion input design ensuring that the uncertainty set becomes strongly robust in finite time.
The third and last step in our approach is to revisit classical adaptive control exploiting the no-
tion of strong robustness, so as to yield the so-called strongly robust adaptive control(Chapter
5). At each time of the design, instead of blindly using the model to achieve the control design
as it is commonly done in classical adaptive control approaches, one first checks whether the
set of all model candidates is strongly robust. Once this condition is met, which is guaranteed
to happen in finite time, one then proceeds to control using a classical certainty equivalence
type of strategy. The developed adaptive control scheme hence splits in two phases. In the
first phase, focus is mainly put on off-line identification of a strongly robust model set. At
each time instant, a criterion tells whether strong robustness is achieved or not. When this
criterion is satisfied, the adaptive control switches to the second phase, the control phase,
where effort is shifted to control according to a certainty equivalence strategy. Proceeding
in this way, one secures asymptotic stability of the closed-loop system, whilst ensuring that
initial uncertainty will not yield undesired transients.
The strong robustness-based adaptive control method is presented in a general framework.
Finally, particular attention is paid to the case of strongly robust adaptive pole placement
design for which a detailed analysis and some implementation aspects have been proposed.



Samenvatting

Dit proefschrift behandelt een bekend probleem in de adaptieve regeltechniek, te weten de
stabiliteit van het regelsysteem in de initiële fase. Traditioneel zijn adaptieve regelmethoden
gebaseerd op het zekerheids equivalentie principe. Tijdens elke iteratie wordt een model van
het te regelen systeem geschat met behulp van een identificatieprocedure. Gebaseerd op dit
model wordt een regelaar ontworpen die op het werkelijke systeem wordt toegepast alsof
er geen modelleerfout is. Zolang de prestaties van het regelsysteem niet bevredigend zijn,
worden de voorgaande stappen herhaald. Met algoritmes gebaseerd op het zekerheids equiv-
alentie principe zijn drie problemen te onderscheiden. Ten eerste is er vanwege de model-
onzekerheid geen enkele garantie dat een regelaar gebaseerd op het model het werkelijke
systeem zal stabiliseren. Dit kan zeer ongewenste overgangsverschijnselen veroorzaken. Ten
tweede is er geen manier is om van tevoren te garanderen dat het model regelbaar is. Helaas
kan er geen regelaar op het model gebaseerd worden als het model niet regelbaar is. Ten derde
kan, zelfs in het geval dat op elk tijdstip het model regelbaar is en de regelaar gebaseerd op
dit model het werkelijke systeem stabiliseert, de asymptotisch stabiliteit van het adaptieve
schema teniet worden gedaan als tijdvariaties in het model te snel zijn.

In dit proefschrift wordt eerst het concept sterke robuustheid, dat fundamenteel is in
ons werk, gedefinieerd. Een verzameling systemen wordt met betrekking tot een gegeven
regeldoel sterk robuust genoemd als het voldoet aan de volgende eigenschap: voor elke rij
systemen in deze verzameling stabiliseert de tijdvariërende regelaar gebaseerd op deze rij
systemen elk vast systeem in de verzameling. In onze context van adaptieve regeltechniek
is het zo dat als de verzameling modellen sterk robuust is, dan bestaat de bijbehorende tijd-
variërende regelaar en deze stabiliseert het onbekende werkelijke systeem, onafhankelijk van
hoe het model wordt aangepast binnen deze verzameling en ongeacht de snelheid van de aan-
passing. Hierdoor worden regelbaarheid van het model en stabiliteit van het tijdvariërende
gesloten-lus systeem gegarandeerd. Eigenschappen die klassieke adaptieve regelmethoden
zonder verder modificaties vaak niet hebben.

Het uitwerken van bovenstaand idee vormt het hoofddoel van het onderzoek in dit proef-
schrift: het ontwerpen van een adaptieve regelprocedure die gebruikt maakt van het concept
van sterke robuustheid. Om dit doel te bereiken is de structuur van het proefschrift drieledig.
Als een eerste stap wordt sterke robuustheid bestudeerd als een wiskundig concept (Hoofd-
stuk 3). In het bijzonder wordt aandacht besteed aan de geometrische eigenschappen van
verzamelingen van systemen die sterk robuust zijn. De gebruikte regeldoelen zijn voor-
namelijk poolplaatsing en lineair kwadratisch regelen. De bestudeerde systemen zijn lineaire
en tijdinvariante SISO-systemen in discrete tijd, met een onbekende-maar-begrensde mod-
elleerfout met bekende boven- en ondergrenzen en van een bekende orde. Een fundamenteel
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resultaat is het bestaan van niet-triviale sterk robuust omgevingen rondom elk systeem in
de beschouwde systeemklasse. Vervolgens worden voldoende voorwaarden afgeleid voor de
karakterisering van sterk robuuste verzamelingen van systemen. De gebruikte technieken zijn
o.a. lineaire matrix ongelijkheden en een Kharitonov achtige test.

De tweede stap in onze aanpak (Hoofdstuk 4) is het combineren van het concept van
sterke robuustheid met identificatie. Met betrekking daartoe wordt aandacht geschonken aan
de volgende vraag: hoe kan een sterk robuuste verzameling modellen verkregen worden in
het perspectief van identificatie ten behoeve van regelen? Om dit identificatievraagstuk op
te lossen, wordt een open-lus identificatie-ingang ontworpen en geı̈mplementeerd, die garan-
deert dat de onzekerheidsverzameling sterk robuust wordt binnen een eindig aantal stappen.

De derde en laatste stap in onze aanpak is het modificeren van de klassieke adaptieve
regeltechniek gebruikmakende van het concept sterke robuustheid. Dit leidt tot wat genoend
zou kunnen worden sterk robuuste adapieve regelsystemen (Hoofdstuk 5). In plaats van blind
het model te gebruiken om het regelontwerp te bereiken, zoals gebruikelijk is in klassieke
adaptieve regelmethodes, wordt nu op elk tijdstip van het ontwerp eerst gecontroleerd of de
verzameling van alle modelkandidaten sterk robuust is. Als eenmaal aan deze voorwaarde is
voldaan, wat gegarandeerd binnen eindige tijd gebeurt, gaat men verder met het regelen vol-
gens een klassieke zekerheids equivalente strategie. Het ontwikkelde adaptieve regelschema
kan dus opgesplitst worden in twee fasen. In de eerste fase ligt de nadruk grotendeels op
open lus identificatie van een sterk robuuste modelverzameling. Op elk tijdstip laat een cri-
terium zien of sterke robuustheid wel of niet bereikt is. Als aan dit criterium voldaan wordt,
schakelt de adaptieve regeling over naar de tweede fase, de regelfase, waarin de nadruk wordt
verschoven naar het regelen van het systeem. Door op deze manier verder te gaan, behoudt
men asymptotische stabiliteit van het gesloten-lus systeem, terwijl men er tegelijkertijd van
verzekerd is dat initiële onzekerheid geen ongewenste overgangsverschijnselen zal opleveren.
De op sterke robuustheid gebaseerde adaptieve regelmethode wordt gepresenteerd in een al-
gemeen kader. Tenslotte wordt in het bijzonder aandacht besteed aan het geval van sterk
robuust poolplaatsingsontwerp, waarvan een gedetailleerde analyse is gemaakt en waarvoor
enkele implementatie-aspekten worden bekeken.



Résumé

Cette dissertation traite du problème souvent rencontré en commande adaptative de procédés
qu’est celui de la stabilité du système commandé en phase transitoire. Les méthodes clas-
siques de synthèse de commandes adaptatives s’inspirent du Principe de l’Equivalence Cer-
taine, basé sur les idées suivantes. A chaque itération de la synthèse du contrôleur, un modèle
du système à commander est estimé au moyen d’une procédure d’identification. A partir de
ce modèle, un contrôleur est synthétisé puis appliqué au système à commander, et cela sans
tenir compte des erreurs de modélisation. Tant que les performances du système contrôlé ainsi
constitué ne sont pas jugées satisfaisantes, l’algorithme précédemment décrit est re-itéré. Une
telle stratégie de synthèse de commande s’accompagne cependant de trois problèmes. Tout
d’abord, en raison des erreurs de modélisation, le concepteur n’a en aucun cas la guarantie que
le contrôleur appliqué stabilise à tout instant le système à commander, de sorte que peuvent
se produire des transitoires d’amplitude déraisonnable dans le comportement entrée-sortie du
système de commande. Le second problème vient du fait qu’il n’y a pas moyen de vérifier a
priori si le modèle est controlable. Si malheureusement il ne l’est pas, auncun contrôleur ne
peut être synthétisé à partir de ce modèle, ce qui entraine une paralysie totale de l’algorithme
de contrôle. De plus, même dans le cas favorable où le modèle est controlable à chaque in-
stant et donc possède une loi de commande qui stabilise le système à commander, la stabilité
du système peut être perdue si le modèle varie trop rapidement.
Dans un premier temps, nous défininissons la notion de robustesse forte(strong robustness)
qui joue un rôle fondamental dans notre travail. Un ensemble de systèmes S est dit forte-
ment robustepar rapport à un objectif de control fixé si il possède la propriété suivante: étant
donnée une famille de sytèmes appartenant à cet ensemble S, le contrôleur variable généré
par cette séquence de systèmes stabilise tout autre système élément de cet ensemble S. Dans
le contexte de contrôle adaptatif qui est le nôtre, sous l’hypothèse que l’ensemble de modèles
que nous considérons est fortement robuste, alors nous avons le résultat suivant: où que soit
choisi le modèle dans cet ensemble de systèmes, et quelle que soit la vitesse avec laquelle
ce modèle est remplacé, le contrôleur variable qui lui correspond est défini à tout moment et
stabilise le système à commander. Par conséquent, la controlabilité du modèle et la stabilité
asymptotique du système de contrôle en boucle fermée sont guarantis, contrairement à ce que
nous pourrions obtenir en utilisant les méthodes classiques de commande adaptative.
Le but principal de cette thèse est de développer une procédure de contrôle adaptatif ex-
ploitant le concept de robustesse forte. Pour atteindre cet objectif, notre étude est menée
en trois temps. Tout d’abord, la notion de robustesse forte est étudiée en tant que concept
mathématique (Chapitre 3). En particulier, nous nous intéressons aux propriétés géométriques
des ensembles de systèmes fortement robustes, principalement dans un cadre de synthèse
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de lois de commande avec placement de pôles ou de la méthode de commande linéaire
quadratique. Les systèmes que nous considérons sont linéaires, invariants dans le temps,
mono-entrée mono-sortie (SISO), discrets et d’ordre connu. L’erreur de modélisation est
quand à elle supposée inconnue mais bornée, et possèdant une borne supérieure et une borne
inférieure connues. Le résultat suivant est établi: autour de tout système dans la classe de
systèmes étudiés, il existe un voisinage de systèmes qui possède la propriété de robustesse
forte. Ensuite, des tests charactérisant les ensembles de systèmes fortement robustes sont
exprimés au moyen d’outils empruntés à la théorie de la commande de systèmes, tels que des
inégalités matricielles linéaires et le test de Kharitonov.
Ensuite, dans la deuxième partie de notre approche (Chapitre 4), nous relions les concepts de
robustesse forte et d’ identification pour le contrôle adaptatif. Pour ce faire, nous nous posons
la question suivante: dans une perspective d’identification en vue d’une synthèse de lois de
commande, quel signal d’entrée utiliser afin d’obtenir des ensembles de modèles fortement
robustes? En réponse à cette question, nous synthétisons et implémentons un signal d’entrée
d’identification en boucle ouverte assurant que l’ensemble des modèles identifiés devient
fortement robuste en temps fini.
Enfin, dans la troisième partie de notre étude nous reconsidérons la stratégie classique de
synthèse de lois de commandes adaptatives à la lumière de notre précédente étude de la notion
de robustess forte. Ceci nous conduit à un algorithme de synthèse de systèmes de contrôle
adaptatif incluant la propriété de robustesse forte (Chapitre 5). A chaque itération, au lieu
d’utiliser aveuglément le modèle pour la synthèse du contrôleur comme le font les méthodes
usuelles de synthèse de systèmes de de contrôle adaptatif, nous vérifions tout d’abord si
l’ensemble des modèles identifiés est fortement robuste. Une fois la condition de robustesse
forte remplie, ce qui est guaranti en temps fini, alors une approche basée sur le principe de
l’équivalence certaine est alors employée. L’algorithme de synthèse de lois de commandes
adaptatives faisant l’objet de cette thèse s’articule donc autour de deux phases. Tout au long
de la première phase, l’effort est surtout mis dans l’identification ”off-line” d’un ensemble de
modèles fortement robuste. A chaque instant, un test est utilisé pour savoir si il y a robustesse
forte ou pas. Lorsque ce test est positif, le système adaptatif entre dans la seconde phase, ou
l’effort est cette fois mis au service du contrôle selon le principe d’équivalence certaine. De
cette facon, nous assurons la stabilité asymptotique du système commandé, tout en garantis-
sant que l’incertitude sur le système à commander ne donne pas naissance à des transitoires
de trop grande amplitude.
Notre méthode de synthèse de systèmes de contrôle adaptatif basée sur la notion de robustesse
forte est présentée dans un contexte aussi général que possible. Ensuite, le cas de placement
de pôles fait l’objet d’une étude plus détaillée et nous permet de simuler certains de nos
résultats.
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